首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11479篇
  免费   1171篇
  国内免费   914篇
化学   9936篇
晶体学   43篇
力学   916篇
综合类   181篇
数学   684篇
物理学   1804篇
  2024年   12篇
  2023年   145篇
  2022年   275篇
  2021年   372篇
  2020年   526篇
  2019年   419篇
  2018年   392篇
  2017年   416篇
  2016年   573篇
  2015年   469篇
  2014年   550篇
  2013年   1250篇
  2012年   752篇
  2011年   667篇
  2010年   502篇
  2009年   551篇
  2008年   528篇
  2007年   672篇
  2006年   563篇
  2005年   533篇
  2004年   466篇
  2003年   393篇
  2002年   345篇
  2001年   249篇
  2000年   238篇
  1999年   196篇
  1998年   191篇
  1997年   184篇
  1996年   139篇
  1995年   155篇
  1994年   107篇
  1993年   124篇
  1992年   110篇
  1991年   83篇
  1990年   70篇
  1989年   45篇
  1988年   49篇
  1987年   42篇
  1986年   28篇
  1985年   31篇
  1984年   29篇
  1983年   9篇
  1982年   14篇
  1981年   15篇
  1980年   17篇
  1979年   17篇
  1978年   11篇
  1976年   10篇
  1973年   10篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
1.
Conjugated polymers feature promising structure and properties for photocatalytic water splitting. Herein, a hydrolysis strategy was demonstrated to rationally modulate the surface hydrophilicity and band structures of conjugated poly-benzothiadiazoles. High hydrophilicity not only enhances the dispersions of polymeric solids in an aqueous solution but also reduces the absorption energy of water molecules. Besides, both theoretical and experimental results reveal that a more positive valence band potential is generated, which contributes to enhancing the photocatalytic water oxidation performance. Accordingly, the surface-modified conjugated polymers show largely promoted photocatalytic water oxidation activities by deposition of cobalt oxides as cocatalysts.  相似文献   
2.
Large amounts of flowback and produced water (FPW) have been generated from hydraulic fracturing process for the production of unconventional gas such as shale gas. Complex organic pollutants are abundantly present in FPW with revealed toxicity to aquatic organisms and these contaminants may transfer into surrounding aquatic environment. Characterization and determination of complicated organic pollutants in FPW remains a challenge due to its complex composition and high salinity matrix. This review article covers the progress of recent 5 years regarding the sample preparation and instrumental analysis methods and thus summarizes the advantages and disadvantages of these methods for critical analysis of organic contaminants in FPW samples. Furthermore, the natural distribution of detected organic compounds and their transformation were reviewed and discussed to enhance the understanding of spatial and temporal behaviors of these organic pollutants in natural environment, paving the way for future development of pollution control policies and strategies. Enlightened by the studies of FPW contamination in the US, the investigations of FPW contamination in China continued to grow due to rapidly growing production of shale gas in China and resulted pollution.  相似文献   
3.
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g−1, with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.  相似文献   
4.
《Mendeleev Communications》2022,32(4):534-536
Correlation times and diffusion coefficients of water molecules were measured for the first time by 1H spin relaxation and pulsed field gradient NMR in Li+, Na+ and Cs+ ionic forms of Nafion 117 membrane. Hydration numbers of Li+, Na+ and Cs+ cations were calculated. It was shown that at high humidity macroscopic transfer is controlled by the local translational motion of water molecules.  相似文献   
5.
In this study, we have provided a facile solution to synthesize well-aligned titanium dioxide nanorods by using hydrothermal reaction. By calcining the materials under different atmospheres and temperatures, a batch of titanium dioxides with excellent oxygen evolution reaction(OER) catalytic efficiency were obtained. This new structured TiO2 photoanode material yields a high photocurrent density of 5.69 mA/cm2 at 1.23 V vs. reversible hydrogen electrode(RHE) under simulated solar light(100 mW/cm2). Surface photovoltage techniques and other measurements were carried out to confirm that the enhanced photoelectrochemical performances were attributed to the synergistic effect of the phase junction and a certain content of surface states, which accelerate the separation and transmission of the photogenerated charges. This material with phase junction and surface states promises a potential application in the field of photoelectric catalysis under solar light.  相似文献   
6.
The application of nanotechnology has become inevitable in almost all sectors such as pharmaceuticals, food and beverages, electronics, transport, etc. The continuous development in the area has led to the emergence of the polymer nanocomposites. The polymer nanocomposites due to their improved mechanical, thermal, electrical, optical, and magnetic properties are widely used in various fields and slowly they have become an integral part of our life. As the application of polymer nanocomposite is going to be inexorable in the near future, this review aims to provide some insight on the need for the polymer nanocomposites, their basic classification, and their manufacturing methods. The study also outlines the analyses that are required to characterize the polymer nanocomposites. Further, the study discusses the existing application of polymer nanocomposites in various fields. As the polymer nanocomposites are going to play a major role in the field of waste water treatment for the years to come, the study has also attempted to shed some light on the application of nanocomposites in water purification.  相似文献   
7.
In nature, wetting phenomena are present nearly everywhere and are a source of inspiration for liquid transportation. A good understanding of the underlying dynamic phenomena that governs wettability is therefore extremely important for researchers involved in bio-inspired surfaces. Herein, we study the adhesive behavior with water of mesh substrates modified with structured copolymers in order to tune the surfaces from parahydrophobic states (high water adhesion) to superhydrophobic states (low water adhesion). Using the ejection test method (ETM), a new technique that consists of the ejection of water droplets deposited onto a substrate with the aid of a catapult system, we experimentally demonstrate that the elasticity of the mesh substrate can be exploited for efficient vertical actuation of droplets.  相似文献   
8.
Proton exchange membrane water electrolysers are very promising renewable energy conversion devices that produce hydrogen from sustainable feedstocks. These devices are mainly limited by the sluggish kinetics of the oxygen evolution reaction (OER). Ir-based nanoparticles are both reasonably active and stable for the OER in acidic media. The electrolyte composition and the pH may play a crucial role in electrocatalysis, yet they have been widely overlooked for the OER. Herein, we present a study on the effects of the composition and concentration of the electrolyte on commercial Ir black nanoparticles using concentrations of 0.05 M, 0.1 M and 0.5 M of both sulphuric and perchloric acid. The results show an important effect of the electrolyte composition on the catalytic performance of the Ir nanoparticles. The concentration of H2SO4 interferes on the oxidation of Ir and decreases the catalytic performance of the catalyst. HClO4 does not show strong interferences in the electrochemistry of Ir. Higher catalytic performances are observed in HClO4 electrolytes in comparison to H2SO4 with little effect of the concentration of HClO4.  相似文献   
9.
The molecular mechanism of the adhesion between silica surface and epoxy resin under atmospheric conditions is investigated by periodic density-functional-theory (DFT) calculations. Slab models of the adhesion interface were built by integrating a fragment of epoxy resin and hydroxylated (0 0 1) surface of α-cristobalite in the presence of adsorbed water molecules. Effects of adsorbed water on the adhesion interaction are evaluated on the basis of geometry-optimized structures, adhesion energies, and forces. Calculated results demonstrate that adsorbed water molecules significantly reduce both the adhesion energies and forces of the silica surface–epoxy resin interface. The reduction of adhesion properties can be associated with structural deformation of water molecules confined in the tight space between the adhesive and adherend as well as structural flexibility of the hydrogen-bonding network in the interfacial region during detachment of the epoxy resin from the hydrophilic silica surface. © 2018 Wiley Periodicals, Inc.  相似文献   
10.
Preparation of autonomous chemotactic micro‐ and nanomachines represents one of the most difficult challenges of modern materials science. To construct a device mimicking the behavior of many microorganisms, which evolved their chemotactic abilities during the millennia of evolution, places extreme demands on the imagination and abilities of researchers. However, with the chemotactic devices in hand, many novel and interesting applications of micromachines could be implemented. The introduction of an autonomous navigation, independent of the external control with electric, magnetic, or electromagnetic field is crucial for applications in environmental remediation and might be advantageous in medical applications. This Minireview summarizes the development in the field of chemotactic micro‐ and nanomachines, describes the trends in their construction, and compares the different approaches to their construction considering the areas of possible application of the devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号