首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3426篇
  免费   284篇
  国内免费   882篇
化学   4232篇
晶体学   46篇
力学   26篇
综合类   37篇
数学   2篇
物理学   249篇
  2024年   3篇
  2023年   99篇
  2022年   129篇
  2021年   199篇
  2020年   209篇
  2019年   164篇
  2018年   128篇
  2017年   156篇
  2016年   185篇
  2015年   141篇
  2014年   158篇
  2013年   266篇
  2012年   357篇
  2011年   198篇
  2010年   159篇
  2009年   237篇
  2008年   230篇
  2007年   262篇
  2006年   228篇
  2005年   201篇
  2004年   162篇
  2003年   148篇
  2002年   111篇
  2001年   62篇
  2000年   59篇
  1999年   63篇
  1998年   47篇
  1997年   40篇
  1996年   23篇
  1995年   45篇
  1994年   29篇
  1993年   26篇
  1992年   25篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   7篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有4592条查询结果,搜索用时 15 毫秒
1.
A one-step Rh-catalyzed site-selective ortho-C−H alkynylation of perylene as well as naphthalene mono- and diimides is reported. A single step regioselective access to ortho-C−H alkynylated derivatives of these ryleneimides not only increases the step economy of the ortho-functionalization on these dyes but also provides a quick access route towards highly functionalized dyes that have potential optoelectronic applications. Increased solubility of tetra(triisopropylsilyl)acetylenyl PDIs in organic solvents greatly enhances their utility for further derivatization.  相似文献   
2.
单碱基错配的识别和稳定性差异在核酸多态性研究中至关重要。在同一电化学传感器平台上,采用电化学发光(ECL)和电化学阻抗(EIS)2种技术,协同研究DNA链中不同类型和不同位点的单碱基错配识别和稳定性差异。电极表面具有茎环构象的探针DNA与完全互补DNA、不同类型或不同位点单碱基错配DNA杂交前后的ECL和EIS信号强度变化有显著差异。信号强度变化可揭示单碱基错配识别的稳定性。结果表明,DNA链中心位点的C-A单碱基错配稳定性低于链两端的,靠近键合电极表面双链链端的C-A单碱基错配稳定性低于非键合电极表面双链链端的,同一中心位点C-X碱基对的稳定性顺序为C-G?C-T>C-A≥C-C。研究结果可为核酸多态性研究提供参考。  相似文献   
3.
该文采用涂覆的方式构建了一种用于灵敏检测抗坏血酸(AA)的电化学传感器。先将多壁碳纳米管(MWCNTs)和氧化石墨烯(GO)混合悬浮液修饰在玻碳电极(GCE)表面,修饰的GO可有效防止MWCNTs聚集,再将具有良好电催化性能的金铂核壳纳米粒子(Au@Pt NPs)修饰在GO/MWCNTs电极上,层层组装构建形成GO/MWCNTs/Au@Pt NPs/GCE三维新型抗坏血酸电化学传感器。该修饰电极在磷酸缓冲溶液中对AA显示了较宽的线性范围和极低的检出限,氧化峰电流与AA浓度在0.005~0.5μmol/L和0.5~1 000μmol/L范围内呈良好的线性关系,相关系数均为0.999,检出限(S/N=3)为4×10~(-9) mol/L,稀释人体血清样品的加标浓度为0.01、0.1、10μmol/L,回收率为90.9%~108%,相对标准偏差(RSD,n=3)为1.2%~2.8%。该修饰电极对AA具有良好的选择性,可有效排除多巴胺、尿酸、葡萄糖等生物小分子的干扰。方法简单、高效、灵敏,可用于临床实际检测。  相似文献   
4.
Polyoxometalates have been proposed in the literature as nanoelectronic components, where they could offer key advantages with their structural versatility and rich electrochemistry. Apart from a few studies on their ensemble behaviour (as monolayers or thin films), this potential remains largely unexplored. We synthesised a pyridyl-capped Anderson–Evans polyoxometalate and used it to fabricate single-molecule junctions, using the organic termini to chemically “solder” a single cluster to two nanoelectrodes. Operating the device in an electrochemical environment allowed us to probe charge transport through different oxidation states of the polyoxometalate, and we report here an efficient three-state transistor behaviour. Conductance data fits a quantum tunnelling mechanism with different charge-transport probabilities through different charge states. Our results show the promise of polyoxometalates in nanoelectronics and give an insight on their single-entity electrochemical behaviour.  相似文献   
5.
Inhibitors of Rho-associated protein kinase (ROCK) enzymatic activity have been shown to reduce the invasive phenotype observed in metastatic hepatocellular carcinoma (HCC). We describe the design, synthesis, and evaluation of a direct probe for ROCK activity utilizing a phosphorylation-sensitive sulfonamido-oxine fluorophore, termed Sox. The Sox fluorophore undergoes an increase in fluorescence upon phosphorylation of a proximal amino acid via chelation-enhanced fluorescence (CHEF, ex. = 360 nm and em. = 485 nm), allowing for the direct visualization of the rate of phosphate addition to a peptide substrate over time. Our optimal probe design, ROCK-S1, is capable of sensitively reporting ROCK activity with a limit of detection of 10 pM and a high degree of reproducibility (Z’-factor = 0.6 at 100 pM ROCK2). As a proof-of-principle for high-throughput screening (HTS) we demonstrate the ability to rapidly assess the efficacy of a 78 member, small molecule library against ROCK2 using a robotics platform. We identify two previously unreported ROCK2 inhibitor scaffolds, PHA665752 and IKK16, with IC50 values of 3.6 μM and 247 nM respectively. Lastly, we define conditions for selectively monitoring ROCK activity in the presence of potential off-target enzymes (PKCα, PKA, and PAK) with similar substrate specificities.  相似文献   
6.
Electrochemical stability and noncovalent interactions escorting the cyclic ammonium-based ionic liquids composed of N-alkyl-substituted N-methyl pyrrolidinium (Pyr1R) (R = methyl, ethyl, propyl, butyl, pentyl, hexyl) cations and four anions hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethylsulfonyl-imide (TFSI), and trifluoromethane sulfonate (TFO) have been analyzed using the density functional theory. Electronic structures, electrochemical window, frontier orbital energy difference (HOMO-LUMO gap), binding energies, vibrational spectra of these ion pairs were characterized. It has been established that ion pair formation is largely reigned by C H⋯F interactions between anionic fluorine for BF4 and PF6 anions and C H⋯O interactions between anionic oxygen for TFSI and TFO anions and pyrrolidinic proton, methyl, or alkyl group protons of the cations. The effect of alkyl chain length and pairing anions of the alkyl substituted N-methyl pyrrolidinium-based ionic liquids on the electrochemical window was investigated. The results revealed that the HOMO energy of pairing anions is the key factor to decide the electrochemical window. Further quantification of noncovalent interactions in terms of electrostatic and hydrogen bonding interactions has been brought out employing a novel method with the aid of Mulliken and Merz-Singh-Kollman charges, prevailed in pyrrolidinium-based ionic liquids.  相似文献   
7.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
8.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   
9.
Copper oxide decorated multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE) was prepared for determination of isoniazid (INZ) in various matrices. The electrochemical behavior of INZ was tested with the aid of Cyclic Voltammetry (CV) and quantitative experiments were performed by using Linear Sweep Voltammetry (LSV). Morphological and structural characterization of the modified electrode was performed by utilizing Scanning Electron Microscopy (SEM), X‐Ray Photoelectron Spectroscopy (XPS) while electrochemical characterization was performed by using CV and Electrochemical Impedance spectroscopy (EIS). The proposed sensor exhibited well defined anodic peak at 0.30 V for INZ at pH 6.0 medium. Under the optimum conditions, a linear relation between INZ concentration and peak current was observed in the range of 2.0×10?7 to 5.0×10?5 M. Limit of detection was calculated as 1.0×10?8 M and repeatability and accuracy was found as 5.60 % and 91.0 % for 5.0 10?7 M INZ by using 3 successive measurement, respectively. Then, the analytic performance of the electrode developed was tested by analyzing commercial tablets, artificial human serum and urine samples. The results indicated that satisfactory recoveries was observed for all issue.  相似文献   
10.
Hole-transporting materials with tunable structures and properties are mainly applied in organic light-emitting diodes as transport layer. But their catalytic properties as signal amplifiers in biological assays are seldom reported. In this paper, a starburst molecule, 4,4,4″-tri(N-carbazolyl)-triphenylamine (TCT), containing a triphenylamine as the central core and three carbazoles as the peripheral functional groups was designed and synthesized. Subsequently, the hole-transporting material based on the TCT polymer, poly(TCT) (PTCT), was achieved via a low-cost electrochemical method and exploited as an efficient metal-free electrocatalyst for non-enzymatic glucose detection. Here, this hole-transporting material served three purposes: electrochemical recognition (owing to hydrogen bonding interaction and the biomimetic microenvironment created by the polymer), electrocatalysis (owing to the hole-transporting capability of triphenylamine and the catalytic property of carbazole), and signal amplification (owing to energy migration along the conductive polymer backbone). The electrocatalytic and sensing performances of the sensor based on PTCT were evaluated in detail. Results revealed that the PTCT film could efficiently catalyze the oxidation of glucose at a less-positive potential (+0.20 V) in the absence of any enzymes. The response to glucose was linear in the concentration range of 1.0–6000 μM, and the detection limit was 0.20 μM. With good stability and selectivity, the proposed sensor could be feasibly applied to detect glucose in practical samples. The encouraging sensing performances suggest that the hole-transporting material is one of the promising biomimetic catalysts for electrocatalysis and relevant fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号