首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4394篇
  免费   548篇
  国内免费   309篇
化学   3910篇
晶体学   3篇
力学   80篇
综合类   83篇
数学   323篇
物理学   852篇
  2024年   2篇
  2023年   56篇
  2022年   117篇
  2021年   99篇
  2020年   140篇
  2019年   120篇
  2018年   136篇
  2017年   167篇
  2016年   170篇
  2015年   170篇
  2014年   484篇
  2013年   507篇
  2012年   400篇
  2011年   524篇
  2010年   448篇
  2009年   500篇
  2008年   257篇
  2007年   212篇
  2006年   148篇
  2005年   129篇
  2004年   116篇
  2003年   78篇
  2002年   55篇
  2001年   25篇
  2000年   34篇
  1999年   24篇
  1998年   19篇
  1997年   19篇
  1996年   11篇
  1995年   22篇
  1994年   10篇
  1993年   15篇
  1992年   11篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   2篇
  1959年   1篇
排序方式: 共有5251条查询结果,搜索用时 46 毫秒
1.
We have developed a reliable, fast, and highly sensitive analytical method utilizing dispersive liquid–liquid microextraction and gold nanoparticles probes for ziram (zinc bis(dimethyldithiocarbamate)) determination. The method is based on the in situ formation of gold nanoparticles in carbon tetrachloride as an organic phase. It was found that the trace levels of ziram influenced the formation of gold nanoparticles, leading to absorbance change of a sedimented phase. The results of the colorimetric ziram determination were in the concentration range of 0.12–2.52 ng/mL with a limit of detection of 0.06 ng/mL. The formation of the stable and dispersed gold nanoparticles in the organic phase provides a good precision for dispersive liquid–liquid microextraction method, resulting in the relative standard deviation of 3.8 and 1.2% for 0.56 and 1.58 ng/mL of ziram, respectively. This method has been successfully used for the ziram determination in samples of well and river water, soil, potato, carrot, wheat, and paddy soil.  相似文献   
2.
柠檬果茶中游离态和键合态挥发性成分分析   总被引:1,自引:0,他引:1  
以柠檬果茶为研究对象,建立了顶空固相微萃取前处理结合气相色谱质谱联用技术测定其中挥发性化合物的分析方法。采用开水冲泡对样品进行提取,通过Amberlite XAD-2大孔吸附树脂对柠檬果茶中的糖苷类挥发性组分键合,分离游离态和键合态化合物,甲醇溶剂作为洗脱剂对键合态化合物进行洗脱,Almondsβ-D-葡萄糖苷酶对其酶解。使用气质联用对样品中游离态和键合态挥发性成分进行检测,其结果根据数据库匹配和对比文献保留时间定性,内标法进行定量。结果表明,柠檬果茶中含有游离态物质24种,键合态物质16种,主要为(+)-柠檬烯、1-辛醇、橙花醇、(-)-4-萜品醇、alpha-松油醇等。方法为花果茶干燥工艺提供参考。  相似文献   
3.
A facile headspace single drop microextraction method was developed using deep eutectic solvent‐based magnetic bucky gel as the extraction solvent for the first time. The hydrophobic magnetic bucky gel was formed by combining choline chloride/chlorophenol deep eutectic solvent and magnetic multiwalled carbon nanotube nanocomposite. Magnetic susceptibility, high viscosity, high sorbing ability, and tunable extractability of organic analytes are the desirable advantages of the prepared gel. Using a rod magnet as a suspensor in combination with the magnetic susceptibility of the prepared gel resulted in a highly stable droplet. This stable droplet eliminated the possibility of drop dislodgement. The prepared droplet made it possible to complete the extraction process in high temperatures and elevated agitation rates. Furthermore, using larger micro‐droplet volumes without any operational problems became possible. These facts resulted in shorter sample preparation time, higher sensitivity of the method, and lower detection limits. Under the optimized conditions, an enrichment factor of 520–587, limit of detection of 0.05–0.90 ng/mL, and linearity range of 0.2–2000 ng/mL (coefficient of determination = 0.9982–0.9995) were obtained. Relative standard deviations were < 10%. This method was successfully coupled with gas chromatography and used for the determination of benzene, toluene, ethylbenzene, and xylene isomers as harmful volatile organic compounds in water and urine samples.  相似文献   
4.
考虑海洋旅游发展程度、区域经济社会发展水平以及海域环境条件等因素,构建旅游用海质量评价指标体系,依据官方渠道采集的统计数据,采用信息熵模型量化指标权重,根据TOPSIS法原理对沿海县(市、区)旅游海域质量进行排序并应用系统聚类法划分海域等级。结果表明:(1)人均海洋旅游总产值、海洋生物多样性指数以及海水质量指数3个评价因子对旅游用海质量影响显著,海水质量指数有反向影响。(2)2007―2016年,浙江省沿海18个县(市、区)旅游用海等级变动较大,“北强南弱”特征明显。(3)比较2007年标准,第二、三、四等级县(市、区)数量有较大幅度增加,五、六等级县(市、区)数量明显减少,旅游海域质量等级整体提高,等级数量变化与沿海县(市、区)海洋旅游发展态势和海洋生态环境变动相吻合。  相似文献   
5.
This study presents a simple and green dispersive micro‐solid phase extraction method for preconcentration of acidic quinolones from honey prior to high performance liquid chromatography determination. A two‐dimensional nanostructured zinc‐aluminum layered double hydroxide was synthesized and used as the sorbent for dispersive micro‐solid phase extraction. Its different characteristics from conventional sorbents is that it is dissolvable in acidic solution (pH < 4). After the extraction, the analyte elution step was omitted and thus the use of organic solvents was avoided. The key parameters influencing the extraction efficiency such as the amount of sorbent, pH of sample solution, vortex time, type and volume of acidic solution were investigated and optimized. The method exhibited low limits of detection (3.0?5.0 ng/g), good linearity (10?2000 ng/g) with coefficients of determinations higher than 0.9991, acceptable precision (RSD<9.1%) and accuracy (RE<5.8%). The proposed method is fast, efficient, eco‐friendly, and suitable for the determination of acidic quinolones in honey samples.  相似文献   
6.
A novel solid‐phase microextraction Arrow was used to separate volatile organic compounds from soy sauce, and the results were verified by using gas chromatography with mass spectrometry. Solid‐phase microextraction Arrow was optimized in terms of three extraction conditions: type of fiber used (polydimethylsiloxane, polyacrylate, carbon wide range/polydimethylsiloxane, and divinylbenzene/polydimethylsiloxane), extraction temperature (40, 50, and 60°C), and extraction time (10, 30, and 60 min). The optimal solid‐phase microextraction Arrow conditions were as follows: type of fiber = polyacrylate, extraction time = 60 min, and extraction temperature = 50°C. Under the optimized conditions, the solid‐phase microextraction Arrow was compared with conventional solid‐phase microextraction to determine extraction yields. The solid‐phase microextraction Arrow yielded 6–42‐fold higher levels than in solid‐phase microextraction for all 21 volatile organic compounds detected in soy sauce due to the larger sorption phase volume. The findings of this study can provide practical guidelines for solid‐phase microextraction Arrow applications in food matrixes by providing analytical methods for volatile organic compounds.  相似文献   
7.
The present paper deals with the multivariate optimization of an extraction‐purification strategy for the determination of phytoestrogens (daidzein, genistein, coumestrol, formononetin, and biochanin A) in soy‐based meat substitutes by high performance liquid chromatography with tandem mass spectrometry. For a reliable quantitation of these new concerning compounds in such a complex matrix, recovery and matrix effect must be carefully evaluated. Therefore, two sequential experimental designs were used to optimize the sample‐pretreatment of soy‐based burgers: the chosen technique was the quick, easy, cheap, effective, rugged and safe methodology, which does not require any particular facility or instrumentation. Thanks to the first screening design (Plackett‐Burman), the significant factors influencing the studied responses were identified and further investigated through a response surface design (Box‐Behnken). The optimal values of the variables (volume of extraction solvent mix/sample mass ratio and two clean‐up sorbents) led to quantitative recoveries (97–104%) and low ion suppression (matrix effect 60–93%) for all analytes. This optimized method was characterized by low detection limits (0.2–1.5 ng/g) and excellent intraday precision (RSD 2–4%). It was applied to the determination of the considered compounds in several soy‐burgers from the Italian market, detecting low ng/g levels (up to 40 ng/g) of coumestrol, formononetin, and biochanin A, and high concentrations (7.9–78 µg/g) of genistein and daidzein.  相似文献   
8.
建立了水产品中11种海洋生物毒素的高效液相色谱-四极杆/静电场轨道阱高分辨质谱(HPLC-Q-Orbitrap HRMS)检测方法。该方法采用分级提取原理,结合分散固相萃取技术(dSPE)和载体辅助液液萃取技术(SLLE),建立了对亲水性及亲脂性海洋生物毒素的"一站式"提取净化体系。在优化条件下,11种毒素在一定质量浓度范围内具有良好的线性关系,相关系数(r)均大于0.99。该方法对11种毒素的检出限为1~10μg/kg,定量下限为2~20μg/kg,加标回收率为55.6%~122%,相对标准偏差为5.4%~16%。方法快速高效,可操作性强,解决了不同理化性质的海洋生物毒素的通用性检测问题,可满足水产品中海洋生物毒素的快速筛查要求。  相似文献   
9.
A new cetyl‐alcohol‐reinforced hollow fiber solid/liquid‐phase microextraction (CA–HF–SLPME) followed by high‐performance liquid chromatography–diode array detection (HPLC–DAD) method was developed for simultaneous determination of ezetimibe and simvastatin in human plasma and urine samples. To prepare the CA–HF–SLPME device, the cetyl‐alcohol was immobilized into the pores of a 2.5 cm hollow fiber micro‐tube and the lumen of the micro‐tube was filled with 1‐octanol with the two ends sealed. Afterwards, the prepared device was introduced into 10 mL of the sample solution containing the analytes with agitation. Under optimized conditions, calibration curves plotted in spiked plasma and urine samples were linear in the ranges of 0.363–25/0.49–25 μg L?1 for ezetimibe/simvastatin and 0.193–25/0.312–25 μg L?1 for ezetimibe/simvastatin in plasma and urine samples, respectively. The limit of detection was 0.109/0.174 μg L?1 for ezetimibe/simvastatin in plasma and 0.058/0.093 μg L?1 for ezetimibe/simvastatin in urine. As a potential application, the proposed method was applied to determine the concentration of selected analytes in patient plasma and urine samples after medication and satisfactory results were achieved. In comparison with reference methods, the CA–HF–SLPME–HPLC–DAD method demonstrates considerable potential in the biopharmaceutical analysis of selected drugs.  相似文献   
10.
A homogeneous liquid‐liquid extraction performed in narrow tube coupled to in–syringe‐dispersive liquid‐liquid microextraction based on deep eutectic solvent has been developed for the extraction of six herbicides from tea samples. In this method, sodium chloride as a separation agent is filled into the narrow tube and the tea sample is placed on top of the salt. Then a mixture of deionized water and deep eutectic solvent (water miscible) is passed through the tube. In this procedure, the deep eutectic solvent is realized as tiny droplets in contact with salt. By passing the droplets from the tea layer placed on the salt layer, the analytes are extracted into them. After collecting the solvent as separated layer, it is mixed with another deep eutectic solvent (choline chloride/butyric acid) and the mixture is dispersed into deionized water placed in a syringe. After adding acetonitrile to break up the cloudy state, the collected organic phase is injected into gas chromatography‐mass spectrometry. Under optimal conditions, limits of detection and quantification in the ranges of 2.6–8.4 and 9.7–29 ng/kg, respectively, were obtained. The extraction recoveries and enrichment factors in the ranges of 70–89% and 350–445 were obtained, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号