首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   12篇
  国内免费   5篇
化学   65篇
物理学   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   6篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有67条查询结果,搜索用时 187 毫秒
1.
The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m‐ZrO2 is 1.3 times more active than on t‐ZrO2, whereas Ni/m‐ZrO2 is three times more active than Ni/t‐ZrO2. Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α‐hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1‐octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1‐octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m‐ZrO2 compared to t‐ZrO2 causes the higher activity of Ni/m‐ZrO2.  相似文献   
2.
The radical–radical coupling reaction is an important synthetic strategy. In this study, the iron-catalyzed radical–radical cross-coupling reaction based on the decarboxylation of keto acids and decarbonylation of aliphatic aldehydes to obtain valuable aryl ketones is reported for the first time. Remarkably, when tertiary aldehydes were used as carbonyl sources, ketone esters were selectively obtained instead of ketones. The gram-scale preparation of aryl ketone through this strategy was easily achieved by using only 3 mol % of the iron catalyst. As a proof-of-concept, the bioactive molecule flurprimidol was synthesized in two steps by using this strategy.  相似文献   
3.
Production of renewable, high-value N-containing chemicals from lignocellulose will expand product diversity and increase the economic competitiveness of the biorefinery. Herein, we report a single-step conversion of furfural to pyrrole in 75 % yield as a key N-containing building block, achieved via tandem decarbonylation–amination reactions over tailor-designed Pd@S-1 and H-beta zeolite catalytic system. Pyrrole was further transformed into dl -proline in two steps following carboxylation with CO2 and hydrogenation over Rh/C catalyst. After treating with Escherichia coli, valuable d -proline was obtained in theoretically maximum yield (50 %) bearing 99 % ee. The report here establishes a route bridging commercial commodity feedstock from biomass with high-value organonitrogen chemicals through pyrrole as a hub molecule.  相似文献   
4.
The rhodium‐catalyzed formation of all‐carbon spirocenters involves a decarbonylative coupling of trisubstituted cyclic olefins and benzocyclobutenones through C? C activation. The metal–ligand combination [{Rh(CO)2Cl}2]/P(C6F5)3 catalyzed this transformation most efficiently. A range of diverse spirocycles were synthesized in good to excellent yields and many sensitive functional groups were tolerated. A mechanistic study supports a hydrogen‐transfer process that occurs through a β‐H elimination/decarbonylation pathway.  相似文献   
5.
综述了基于钯催化脱羰端烯化反应的若干昆虫性信息素的合成  相似文献   
6.
Studies of carbon-13 and carbon-14 kinetic isotope effects (K. I. E.) in the decarbonylation of lactic acid (L. A.) in sulphuric acid and in phosphoric acids media have been summarized and compared with earlier studies of 14C and 13C K. I. E. in the decarbonylation of formic and oxalic acids in concentrated sulphuric acid. Supplementary data concerning the decarbonylation of L. A. in sulphuric acid diluted with water and in pyrophosphoric acid are presented and discussed. The observed temperature dependences of 13C and 14C K. I. E. in concentrated H2SO4 and in concentrated phosphoric acids media have been rationalized by invoking a change of the mechanism of decarbonylation of L. A. in concentrated sulphuric and phosphoric acids with temperature. Preliminary calculational results concerning 13C and 1??C K. I. E. in decarbonylation processes are also presented. In H2SO4 diluted with water and in H3PO4 diluted with water the temperature dependence of 13C and 14C K. I. E. is normal and well reproduced by one frequency approximation. In concentrated sulphuric acid and in concentrated phosphoric acids besides the C—OH bond rupture the rupture of a C—C bond had to be considered also to reproduce the observed 13C K. I. E. in selected temperature regions.  相似文献   
7.
The title chroman is useful in synthesis and as a water‐soluble analog of γ‐tocopherol, a member of the vitamin E family. This new synthesis of γ‐trolox proceeds via selective aromatic demethylation of Trolox, the more easily available 2,5,7,8‐tetramethyl homolog compound. This route is shorter than the previous synthesis, avoids the use of cyanide and methoxybutadiene, and requires no chromatography.  相似文献   
8.
Arenes with various alkyl side‐chains were synthesized in high yields and excellent regioselectivities. Starting from toluic and naphthoic acids, the carboxylate group was conveniently substituted by alkyl halides by Birch reduction and subsequent decarbonylation. The method is characterized by inexpensive starting materials and reagents, and methylation of arenes was realized. Besides simple alkyl substituents, the scope of arene functionalization was extended by benzyl, fluoro, amino, and ester groups. We were able to control the alkylation of 1‐naphthoic acid during Birch reduction by the addition of tert‐butanol. This allowed the regioselective synthesis of mono and bis‐substituted naphthalenes from the same starting material.  相似文献   
9.
The platina‐β‐diketone [Pt2{(COMe)2H}2(µ‐Cl)2] ( 1 ) was found to react with monodentate phosphines to yield acetyl(chloro)platinum(II) complexes trans‐[Pt(COMe)Cl(PR3)2] (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PMePh2, 2c ; PMe2Ph, 2d ; P(n‐Bu)3, 2e ; P(o‐tol)3, 2f ; P(m‐tol)3, 2g ; P(p‐tol)3, 2h ). In the reaction with P(o‐tol)3 the methyl(carbonyl)platinum(II) complex [Pt(Me)Cl(CO){P(o‐tol)3}] ( 3a ) was found to be an intermediate. On the other hand, treating 1 with P(C6F5)3 led to the formation of [Pt(Me)Cl(CO){P(C6F5)3}] ( 3b ), even in excess of the phosphine. Phosphine ligands with a lower donor capability in complexes 2 and the arsine ligand in trans‐[Pt(COMe)Cl(AsPh3)2] ( 2i ) proved to be subject to substitution by stronger donating phosphine ligands, thus forming complexes trans‐[Pt(COMe)Cl(L)L′] (L/L′ = AsPh3/PPh3, 4a ; PPh3/P(n‐Bu)3, 4b ) and cis‐[Pt(COMe)Cl(dppe)] ( 4c ). Furthermore, in boiling benzene, complexes 2a – 2c and 2i underwent decarbonylation yielding quantitatively methyl(chloro)platinum(II) complexes trans‐[Pt(Me)Cl(L)2] (L = PPh3, 5a ; P(4‐FC6H4)3, 5b ; PMePh2, 5c ; AsPh3, 5d ). The identities of all complexes were confirmed by 1H, 13C and 31P NMR spectroscopy. Single‐crystal X‐ray diffraction analyses of 2a ·2CHCl3, 2f and 5b showed that the platinum atom is square‐planar coordinated by two phosphine ligands (PPh3, 2a ; P(o‐tol)3, 2f ; P(4F‐C6H4)3, 5b ) in mutual trans position as well as by an acetyl ligand ( 2a, 2f ) and a methyl ligand ( 5b ), respectively, trans to a chloro ligand. Single‐crystal X‐ray diffraction analysis of 3b exhibited a square‐planar platinum complex with the two π‐acceptor ligands CO and P(C6F5)3 in mutual cis position (configuration index: SP‐4‐3). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
The ligand N-(n-propyl)-2-pyridylmethanimine (pyim) and an immobilised analogue of this ligand (MCM-41-pyim) were prepared by the condensation reaction of 2-pyridinecarboxaldehyde with either propylamine or aminopropyl groups covalently attached to the ordered mesoporous silica MCM-41. Free and immobilised tetracarbonyl complexes of the type cis-[Mo(CO)4(L)] (L = pyim (1), MCM-41-pyim) were then prepared by microwave-assisted heating of a mixture of Mo(CO)6 and the organic ligand or ligand-silica in toluene at 110 °C for 30-45 min. The products were characterised by NMR spectroscopy (1H, 13C and 29Si, in solution and in the solid state), elemental analysis, N2 adsorption, and FT-IR spectroscopy. When used as catalyst precursors for the epoxidation of cis-cyclooctene by tert-butylhydroperoxide at 55 °C (1 mol% catalyst (Mo), no additional co-solvent), 1,2-epoxy-cyclooctane was obtained as the only reaction product in quantitative yield after 5 h for 1 and 36% yield after 24 h for the supported complex. The use of the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate as co-solvent led to lower catalytic activities (epoxide selectivity was always 100%) but allowed the catalyst/IL mixtures (homogeneous mixture for IL+1 and a biphasic solid + IL system for IL+MCM-41-pyim/Mo) to be easily recovered and reused in subsequent runs without loss of catalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号