首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7657篇
  免费   1346篇
  国内免费   1416篇
化学   9050篇
晶体学   163篇
力学   71篇
综合类   64篇
数学   11篇
物理学   1060篇
  2024年   2篇
  2023年   109篇
  2022年   122篇
  2021年   267篇
  2020年   483篇
  2019年   358篇
  2018年   293篇
  2017年   310篇
  2016年   522篇
  2015年   500篇
  2014年   528篇
  2013年   857篇
  2012年   691篇
  2011年   474篇
  2010年   386篇
  2009年   402篇
  2008年   430篇
  2007年   463篇
  2006年   437篇
  2005年   475篇
  2004年   404篇
  2003年   341篇
  2002年   217篇
  2001年   167篇
  2000年   163篇
  1999年   121篇
  1998年   103篇
  1997年   137篇
  1996年   114篇
  1995年   102篇
  1994年   79篇
  1993年   55篇
  1992年   82篇
  1991年   52篇
  1990年   41篇
  1989年   38篇
  1988年   17篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   5篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1973年   3篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Copper(I)–N-heterocyclic-carbene (NHC) complexes enabled the catalytic generation of nucleophilic hydrides from dihydrogen (H2) and their subsequent transfer to allylic chlorides. The highly chemoselective catalyst displayed no concomitant hydrogenation reactivity; in fact, the terminal double bond formed in the hydride transfer remained intact. Switching to deuterium gas (D2) allowed for regioselective monodeuteration with excellent isotope incorporation.  相似文献   
2.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
3.
The construction of DNA‐encoded chemical libraries (DECLs) crucially relies on the availability of chemical reactions, which are DNA‐compatible and which exhibit high conversion rates for a large number of diverse substrates. In this work, we present our optimization and validation procedures for three copper and palladium‐catalyzed reactions (Suzuki cross‐coupling, Sonogashira cross‐coupling, and copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC)), which have been successfully used by our group for the construction of large encoded libraries.  相似文献   
4.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   
5.
The heterostructured Ag nanoparticles decorated Fe3O4 Glutathione (Fe3O4‐Glu‐Ag) nanoparticles (NPs) were synthesized by sonicating glutathione (Glu) with magnetite and further surface immobilization of silver NPs on it. The ensuing magnetic nano catalyst is well characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), powder X‐ray diffraction (PXRD), thermogravimetric analysis (TGA). The prepared Fe3O4‐Glu‐Ag nanoparticles have proved to be an efficient and recyclable nanocatalyst with low catalyst loading for the reduction of nitroarenes and heteronitroarenes to respective amines in the presence of NaBH4 using water as a green solvent which could be easily separated at the end of a reaction using an external magnet and can be recycled up to 5 runs without any significant loss in catalytic activity. Gram scale study for the reduction of 4‐NP has also being carried out successfully and it has been observed that this method can serve as an efficient protocol for reduction of nitroarenes on industrial level.  相似文献   
6.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   
7.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   
8.
A copper-catalyzed trifunctionalization of alkynes that provides rapid access to oxindoles bearing a geminal diboronate side chain, highlighted by the simultaneous formation of one C−C bond and two C−B bonds, is reported. This new reaction features simple reaction conditions (ligand-free catalysis), a general substrate scope, and excellent chemoselectivity. Mechanistic study revealed a reaction sequence constituted by, in the order, borylation, intramolecular cross-coupling, hydroboration, which has been rarely documented.  相似文献   
9.
Overuse and misuse of antibacterial drugs has resulted in bacteria resistance and in an increase in mortality rates due to bacterial infections. Therefore, there is an imperative necessity of new antibacterial drugs. Bio-organometallic derivatives of antibacterial agents offer an opportunity to discover new active antibacterial drugs. These compounds are well-characterized products and, in several examples, their antibacterial activities have been studied. Both inhibition of the antibacterial activity and strong increase in the antibiotic activity of the parent drug have been found. The synthesis of the main classes of bio-organometallic derivatives of these drugs, as well as examples of the use of structure–activity relation (SAR) studies to increase the activity and to understand the mode of action of bio-organometallic antimicrobial peptides (BOAMPs) and platensimicyn bio-organometallic mimics is presented in this article.  相似文献   
10.
The syntheses, structures, and chemotherapeutic activities of Ag(I)‐, Au(I)‐, and Ru(II)‐complexes ligated to a novel N‐heterocyclic carbene ligand, 2‐(4‐nitrophenyl)imidazo[1,5‐a]pyridin‐2‐ylidene ( 1 ), are described. The corresponding complexes, [Ag( 1 )2][PF6], [Au( 1 )2][PF6] ( 3 ), and [Ru( 1 )(p‐cymene)Cl][PF6] ( 4 ), were prepared using convenient transmetallation chemistry and characterized using a range of spectroscopic and analytical techniques. X‐ray crystallography revealed that complexes 2 and 3 adopted linear structures whereas 4 exhibited a prototypical “piano‐stool”‐like geometry; the structural assignments were further supported by DFT calculations. A series of in vitro studies revealed that while the aforementioned Ag(I), Au(I) and Ru(II) complexes exhibited significant cytotoxicities against the human colon adenocarcinoma (HCT 116), lung cancer (A549), and breast cancer (MCF7) cell lines, the Ru derivative was most prominent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号