首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   19篇
  国内免费   15篇
化学   207篇
力学   3篇
数学   3篇
物理学   34篇
  2023年   11篇
  2022年   1篇
  2021年   16篇
  2020年   9篇
  2019年   9篇
  2018年   7篇
  2017年   8篇
  2016年   9篇
  2015年   12篇
  2014年   8篇
  2013年   23篇
  2012年   19篇
  2011年   11篇
  2010年   11篇
  2009年   13篇
  2008年   16篇
  2007年   9篇
  2006年   7篇
  2005年   11篇
  2004年   8篇
  2003年   10篇
  2002年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
1.
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).  相似文献   
2.
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.  相似文献   
3.
This review reports recent advances in the versatile application of collagen. Collagen materials have attracted great attention because they exhibit properties required in cosmetic preparations, in the biomedical field, and in the tanning industry leading to leather production. Herein, the structure and application of collagen are discussed in general, and detailed examples are also drawn from scientific literature and practical work. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
Collagen and elastin are the major proteins of an extracellular matrix. They possess attractive, complementary mechanical properties in their native state, but during isolation, its unique structure is destroyed, which affects the parameters of the materials. However, they still have excellent biological properties. The cross‐linking process improves the physicochemical properties of protein materials. The ideal cross‐linking agent should be effective and does not impair the biological properties of the material. Therefore, poly(ethylene) glycol‐dialdehyde was used in the study. The results show that the addition of poly(ethylene) glycol‐dialdehyde in combination with the neutralization of a collagen/elastin solution is a useful method for preparation of protein hydrogels. The gels are transparent and relatively stiff. They exhibit good mechanical properties, surface properties and are attractive for 3 T3 cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
Physically crosslinked polyvinyl alcohol/collagen composite hydrogels were prepared by a cyclic freezing-drying technique. The biological properties of the hydrogels, including hemolysis, anaphylaxis, pyrogen and acute systemic toxicity tests and implantation in-vivo, were investigated. The hemolysis test suggested that the polyvinyl alcohol/collagen, with a hemolysis index of 1.19%, did not have an obvious hemolysis reaction. There was no toxicosis or death cases observed in the acute systemic toxicity test, and the hydrogel showed no anaphylaxis or pyrogen response. The composite hydrogel showed a good histological compatibility in the in-vivo study. The results indicated that the polyvinyl alcohol/collagen composite hydrogels have promising applications for pharmaceutical and biomedical fields.  相似文献   
6.

In this study for preparing the better performance scaffold materials for peripheral nerve repairing, the collagen‐based composite scaffolds are crosslinked with glutaraldehyde and their structure and performance are investigated. The results of FTIR indicated that the collagen and chitosan are certainly crosslinked through GTA without any significant change in the chemical property. It was observed under a scanning electron microscope (SEM) that the crosslinked collagen‐based composite scaffolds had a porous three‐dimensional cross‐linked structure. The experiments showed that the biostability of the scaffold is greatly enhanced, but the GTA crosslinking induces the potential cytotoxicity and poor hydrophilic nature. To overcome these disadvantages, the low temperature plasma technology is utilized to modify the surface of the cross‐linked collagen‐based composite scaffolds in this study. Measurements of water contact angle showed that hydrophilic nature of surface of the scaffolds was improved after low temperature plasma technology modification. The cell proliferation experiments revealed that the modified collagen‐based composite scaffolds still kept their bioactivity and benefited the proliferation.  相似文献   
7.
8.
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom‐up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen‐based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.  相似文献   
9.
《化学:亚洲杂志》2017,12(6):655-664
Highly flexible hydroxyapatite/collagen (HAP/Col) composite membranes are regarded to be significant for guided bone regeneration application owing to their similar chemical composition to that of natural bone, excellent bioactivity and good osteoconductivity. However, the mechanical strength of the HAP/Col composite membranes is usually weak, which leads to difficult surgical operations and low mechanical stability during the bone healing process. Herein, highly flexible ultralong hydroxyapatite nanowires/collagen (UHANWs/Col) composite biopaper sheets with weight fractions of UHANWs ranging from 0 to 100 % are facilely synthesized. The UHANWs are able to weave with each other to construct a three‐dimensional fabric structure in the collagen matrix, providing a strong interaction between UHANWs and an intermolecular force between UHANWs and the collagen matrix. The as‐prepared UHANWs/Col composite biopaper exhibits improved mechanical properties and high flexibility. More importantly, the as‐prepared highly flexible 70 wt % UHANWs/Col composite biopaper exhibits an excellent cytocompatibility and outstanding cellular attachment performance as compared with the pure collagen and 70 wt % HAP nanorods/Col membranes. In consideration of its superior mechanical properties and outstanding cellular attachment performance, the as‐prepared UHANWs/Col composite biopaper is promising for applications in various biomedical fields such as guided bone regeneration.  相似文献   
10.
The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)‐1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen‐based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP‐1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP‐1, liver cancer cells undergo active proliferation, downregulation of E‐cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP‐1. Overall, this study serves to better understand and control the effects of MMP‐induced matrix remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号