首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   98篇
  国内免费   75篇
化学   686篇
晶体学   21篇
力学   68篇
综合类   4篇
数学   6篇
物理学   333篇
  2024年   1篇
  2023年   8篇
  2022年   14篇
  2021年   19篇
  2020年   24篇
  2019年   23篇
  2018年   15篇
  2017年   27篇
  2016年   46篇
  2015年   36篇
  2014年   36篇
  2013年   69篇
  2012年   47篇
  2011年   73篇
  2010年   44篇
  2009年   71篇
  2008年   64篇
  2007年   52篇
  2006年   52篇
  2005年   50篇
  2004年   50篇
  2003年   64篇
  2002年   33篇
  2001年   23篇
  2000年   31篇
  1999年   8篇
  1998年   27篇
  1997年   28篇
  1996年   15篇
  1995年   10篇
  1994年   16篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1973年   1篇
排序方式: 共有1118条查询结果,搜索用时 93 毫秒
1.
High-reflective multilayer laser coatings are widely used in advanced optical systems from high power laser facilities to high precision metrology systems. However, the real interface quality and defects will significantly affect absorption/scattering losses and laser induced damage thresholds of multilayer coatings. With the recent advances in the control of coating design and deposition processes, these coating properties can be significantly improved when properly engineered the interface and defects. This paper reviews the recent progress in the physics of laser damage, optical losses and environmental stability involved in multilayer reflective coatings for high power nanosecond near-infrared lasers. We first provide an overview of the layer growth mechanisms, ways to control the microstructures and reduce layer roughness, as well as the nature of defects which are critical to the optical loss and laser induced damage. Then an overview of interface engineering based on the design of coating structure and the regulation of deposition materials reveals their ability to improve the laser induced damage threshold, reduce the backscattering, and realize the desirable properties of environmental stability and exceptional multifunctionality. Moreover, we describe the recent progress in the laser damage and scattering mechanism of nodule defects and give the approaches to suppress the defect-induced damage and scattering of the multilayer laser coatings. Finally, the present challenges and limitations of high-performance multilayer laser coatings are highlighted, along with the comments on likely trends in future.  相似文献   
2.
Silicone/fluorine‐functionalized polyacrylates were synthesized and subsequently used to prepare corrosion‐resistant transparent coatings via electrophoretic deposition. The coated tin plate with the functionalized polyacrylate had a gloss value higher than 95.0 GU and resisted rust after immersion in a 5 wt% NaCl solution for 10 days. In addition, these coatings remained adhered strongly to the tin plates even after they were bent. It is hoped that this work will provide useful experimental data and assist researchers with the design of applicable coatings with desirable properties. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
4.
In this paper, the behaviour of the industrial applied Ti/Zr conversion coating (CC) pretreatment on rolled automotive aluminium samples (AA5182) is analysed. Due to its nanometre lateral and depth resolution, Auger electron spectroscopy (AES) is used to analyse the CC distribution at surface cathodic intermetallic particles. As a result of its high surface sensitivity, the AES technique is very susceptible to differences in the top contamination layer thickness. It is demonstrated that AES point measurements performed on aluminium model samples coated with 1.5 and 3 nm of Ti (oxide) layer cannot differentiate the two-layer thicknesses if a difference in the top contamination thickness is not taken into account. A data analysis methodology is introduced, based on the ratio of normalized peak areas (enrichment ratios), to eliminate the effect of the contamination layer thickness. The experimental validation of the methodology is performed on the model samples, demonstrating errors of 2% on the enrichment ratios on similar samples with different contamination layer thicknesses, while the conventional spectra quantification results in errors of 49%. The methodology is also theoretically substantiated within certain constraints. By the use of the AES methodology, an enriched Ti and Zr deposition is confirmed at the cathodic intermetallic particles at the surface of the industrial no-rinse CC sprayed automotive aluminium sheet samples.  相似文献   
5.
The generation of air microbubbles in microfluidic systems or in capillaries could be of great interest for transportation (single cell analysis, organite transportation) or for liquid compartmentation. The physicochemical characterization of air bubbles and a better understanding of the process leading to bubble generation during electrophoresis is also interesting in a theoretical point of view. In this work, the generation of microbubbles on hydrophobic Glaco™ coated capillaries has been studied in water-based electrolyte. Air bubbles were generated at the detection window and the required experimental parameters for microbubbles generation have been identified. Generated bubbles migrated against the electroosmotic flow, as would do strongly negatively charged solutes, under constant electric field. They have been characterized in terms of dimensions, electrophoretic mobility, and apparent charge.  相似文献   
6.
Demand for long‐lasting antifouling surfaces has steered the development of accessible, novel, biocompatible and environmentally friendly materials. Inspired by lubricin (LUB), a component of mammalian synovial fluid with excellent antifouling properties, three block polymers offering stability, efficacy, and ease of use were designed. The bottlebrush‐structured polymers adsorbed strongly on silica surfaces in less than 10 minutes by a simple drop casting or online exposure method and were extremely stable in high‐salinity solutions and across a wide pH range. Antifouling properties against proteins and bacteria were evaluated with different techniques and ultralow fouling properties demonstrated. With serum albumin and lysozyme adsorption <0.2 ng cm?2, the polymers were 50 and 25 times more effective than LUB and known ultralow fouling coatings. The antifouling properties were also tested under MPa compression pressures by direct force measurements using surface forces apparatus. The findings suggest that these polymers are among the most robust and efficient antifouling agents currently known.  相似文献   
7.
Phenol-paraphenylenediamine (P-pPDA) benzoxazines exhibit excellent barrier properties, adequate to protect aluminum alloys from corrosion, and constitute interesting candidates to replace chromate-containing coatings in the aeronautical industry. For the successful application of P-pPDA coatings, it is necessary to decrease the curing temperature to avoid the delamination of the coating while preserving the mechanical properties of the alloy, as well as the barrier properties of the coating. However, decreasing the curing temperature leads to less polymerized films, the extent of which requires a quantitative assessment. While the conversion rate of the polymerization reaction is commonly evaluated for bulk samples using differential scanning calorimetry (DSC), a tool for its evaluation in thin films is missing. Therefore, a new approach was developed for that matter using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The relation between the SIMS data integrated from inside thin films and the DSC results obtained on bulk samples with the same curing cycle allowed to calibrate the SIMS data. With this preliminary calibration of the technique, the polymerization of P-pPDA coatings can be locally determined, at the surface and along the depth of the coating, using dual-beam depth profiling with large argon cluster beam sputtering.  相似文献   
8.
Ternary monomer reactivity ratios of triisopropylsilyl acrylate (SiA), methyl methacrylate (MMA), and n‐butyl acrylate (BA), as common monomers in self‐polishing coatings (SPCs) binders are obtained using experimental data collected from free radical bulk polymerization at 70 °C. Different terpolymerizations at low and medium‐high conversions are performed at optimized feed compositions. Estimations are made using the error‐in‐variables model (EVM) framework, applying the recast form of the Alfrey–Goldfinger (AG) model and a direct numerical integration (DNI) approach to the collected data. Estimations from individual low and medium‐high conversion data are compared to those found with the combined data (full conversion range data). The highest certainty in point estimates are obtained with analysis of the full conversion range data. Furthermore, the reactivity ratios determined from the combined data fall between those found with analysis of individual low and medium‐high conversion data, another corroboration of reliable data collection. Reactivity ratios determined from analysis of the combined data (rSiA/MMA = 0.4185, rMMA/SiA = 1.3754, rSiA/BA = 0.8739, rBA/SiA = 0.5736, rBA/MMA = 0.3692, rMMA/BA = 1.7919) are used in the recast AG model to predict cumulative terpolymer composition as a function of conversion. The experimental data and model prediction show satisfactory agreement.  相似文献   
9.
Waterborne alkyd resin coatings are ideal for use as corrosion protection coatings because of its high cost‐effective and environmental advantages. However, their uses are restricted to general applications due to their poor acid, water, and alkali resistance. In this work, waterborne alkyd hybrid resins modified with fluorinated acrylate‐siloxane were synthesized via a surfactant‐free miniemulsion polymerization process using maleic anhydride and silicon modified alkyd resin, dodecafluoroheptyl methacrylate, methyl methacrylate, and butyl acrylate as monomers. And then, crosslinking alkyd resin films were prepared at room temperature using trimethylolpropane‐tris‐(βN‐azir‐idinyl) propionate (XR‐100) as the crosslinking agent. The acquired films had lower water absorption and higher water contact angles and had better mechanical/thermal properties, as well as good waterproof property. Most importantly, the electrochemical corrosion studies revealed that the cross‐linked coating exhibited superior corrosion resistance performance with an inhibition efficiency of 99.95% and a corrosion rate of 6.95 × 10?3 mm per year.  相似文献   
10.
The preparation and performance improvement of the spinel coating on the surface of ferritic alloy is of wide interest for its application in the metallic interconnects of the solid oxide fuel cells (SOFCs). The Co Mn2O3 composite coating is prepared on the surface of the Crofer alloy by the composite electrodeposition method. A step-heating thermal conversion process is subsequently used to convert the composite coating into a spinel coating, while a direct-heating process is implemented as the control experiment. Isothermal oxidation tests are then carried out for the prepared samples in order to present the high temperature performance. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and area-specific resistance (ASR) are used to analyze the properties of the matrix and coatings. The experimental results reveal that the coatings by step-heating thermal conversion exhibit better performance of electrical conductivity and oxidation resistance than the coatings by direct-heating process. Furthermore, with the increase of oxidation time, the atomic proportion of Cr element diffusing to the surface of the matrix is maintained at about 3%–4% for the samples with spinel coatings by step heating, which effectively prevent the Cr volatilization in the matrix. The preparation of spinel coatings on the ferritic alloy by composite electrodeposition and step-heating thermal conversion is helpful to stimulate new ideas for the development of reliable and cost-effective metallic interconnect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号