首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   19篇
  国内免费   10篇
化学   103篇
物理学   7篇
  2023年   3篇
  2021年   11篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
排序方式: 共有110条查询结果,搜索用时 23 毫秒
1.
Photoactivated chemotherapy (PACT) has appealing merits over traditional chemotherapy as well as photodynamic therapy (PDT) by virtue of its spatial and temporal control on drug activity and oxygen-independent mechanisms of action. However, the short photoactivation wavelengths, e.g., visible light–activated Ru(II)-based PACT agents, limit the clinical application severely. In this work, a facile construction of supramolecular nanoparticles from a poly(ethylene glycol) (PEG)-modified [Ru(dip)2(py-SO3)]+ (abbreviated as Ru-PEG, dip = 4,7-diphenyl-1,10-phenanthroline, py-SO3 = pyridine-2-sulfonate) and 1,3-phenylenebis(pyren-1-ylmethanone) (BP) is shown. While Ru-PEG may undergo photoinduced ligand dissociation and release anticancer species of [Ru(dip)2(H2O)2]2+, BP has extremely large two-photon absorption cross sections (δ2) in the NIR region and intense fluorescence over the wavelengths where Ru-PEG has strong absorption. Thus, two-photon excitation of BP followed by an efficient Förster resonance energy transfer (FRET) from BP to Ru-PEG may lead to a potent inactivation against cisplatin-resistant cancer cells and 3D multicellular tumor spheroids (MCTSs). The residue fluorescence of BP also allows the cellular uptake of the particles to be visualized. This work provides a universal and convenient strategy to realize theranostic PACT in the ideal phototherapeutic window of 650–900 nm.  相似文献   
2.
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.  相似文献   
3.
Cisplatin has been clinically used for treatment of solid tumors such as non–small-cell lung cancer for decades. However, tumor resistance may be acquired with losing the antitumor activity of cisplatin. As cellular membrane is the first barrier that cisplatin has to overcome before its further action inside the cells, the membrane composition must play a vital role in the cisplatin uptake and excretion, which further influences cisplatin sensitivity. In this work, we applied time-of-flight secondary ion mass spectrometry (ToF-SIMS) surface analysis combined with principle component analysis to distinguish the differences of cell membrane composition between non–small-cell lung cancer cells (A549) and its cisplatin resistant counterpart A549/DDP cells. The decreased phosphatidylcholine content and more abundant cholesterol were observed in the drug resistant cell surfaces, indicating the decreased membrane fluidity of A549/DDP cells. Moreover, we further compared membrane composition of A549 and A549/DDP cells after being treated with different concentrations of cisplatin. A higher composition level of proteins was discovered on all groups of A549/DDP cell membranes. The altered surface chemistry of cellular membranes induced by cisplatin indicates the significance of membrane structures in the drug resistance, which deserves further investigations to this regard.  相似文献   
4.
The incorporation of cisplatin (CP) as a cytotoxic antineoplastic agent in most chemotherapeutic protocols is a challenge due to its toxic effect on testicular tissues. Natural compounds present a promising trend in research, so a new nutraceutical formulation (NCF) was designed to diminish CP spermatotoxicity. A combination of three nutraceutical materials, 250 mg Spirulina platensis powder (SP), 25 mg Tribulus terrestris L. extract (TT), and 100 mg fish oil (FO) were formulated in self-nanoemulsifying self-nanosuspension (SNESNS). SP was loaded into the optimized self-nanoemulsifying system (30% FO, 50% span 80/cremophor EL and 20% isopropanol) and mixed with TT aqueous solution to form SNESNS. For the SP, phytochemical profiling revealed the presence of valuable amounts of fatty acids (FAs), amino acids, flavonoids, polyphenols, vitamins, and minerals. Transmission electron microscopy (TEM) and particle size analysis confirmed the formation of nanoemulsion-based nanosuspension upon dilution. Method validation of the phytochemical constituents in NCF has been developed. Furthermore, NCF was biologically evaluated on male Wistar rats and revealed the improvement of spermatozoa, histopathological features, and biochemical markers over the CP and each ingredient group. Our findings suggest the potential of NCF with SNESNS as a delivery system against CP-induced testicular toxicity in male rats.  相似文献   
5.
The potential role of cyanide-bridged platinum-iron complexes as an anti-cancer Pt(IV) prodrug is studied. We present design principles of a dual-function prodrug that can upon reduction dissociate and release concurrently six cisplatin units and a ferricyanide anion per prodrug unit. The prodrug molecule is a unique complex of hepta metal centers consisting of a ferricyanide core with six Pt(IV) centers each bonded to the Fe(III) core through a cyano ligand. The functionality of the prodrug is addressed through density functional theory (DFT) calculations.  相似文献   
6.
DNA damage repair through the nucleotide excision repair (NER) pathway is one of the major reasons for the decreased antitumor efficacy of platinum‐based anticancer drugs that have been widely applied in the clinic. Inhibiting the intrinsic NER function may enhance the antitumor activity of cisplatin and conquer cisplatin resistance. Herein, we report the design, optimization, and application of a self‐assembled lipid nanoparticle (LNP) system to simultaneously deliver a cisplatin prodrug together with siRNA targeting endonuclease xeroderma pigmentosum group F (XPF), a crucial component in the NER pathway. The LNP is able to efficiently encapsulate both the platinum prodrug and siRNA molecules with a tuned ratio. Both platinum prodrug and XPF‐targeted siRNA are efficiently carried into cells and released; the former damages DNA and the latter specifically downregulates both mRNA and protein levels of XPF to potentiate the platinum drug, leading to enhanced expression levels of apoptosis markers and improved cytotoxicity in both cisplatin‐sensitive and ‐resistant human lung cancer cells. Our results demonstrate an effective approach to utilize a multi‐targeted nanoparticle system that can specifically silence an NER‐related gene to promote apoptosis induced by cisplatin, especially in cisplatin‐refractory tumors.  相似文献   
7.
Recently, PtIV prodrugs have attracted much attention as the next generation of platinum‐based antineoplastic drug candidates. Here we report the discovery and evaluation of monochalcoplatin, a monocarboxylated PtIV prodrug that is among the most cytotoxic PtIV prodrugs to date. Compared with its dicarboxylated counterpart chalcoplatin, monochalcoplatin accumulates astonishingly effectively and rapidly in cancer cells, which is not ascribed to its lipophilicity. The prodrug is quickly reduced, causes DNA damage, and induces apoptosis, resulting in superior cytotoxicity with IC50 values in the nanomolar range in both cisplatin‐sensitive and ‐resistant cells; these IC50 values are up to 422‐fold higher than that of cisplatin. A detailed mechanistic study reveals that monochalcoplatin actively enters cells through a transporter‐mediated process. Moreover, monochalcoplatin shows significant antitumor activity in an in vivo colorectal tumor model. Our study implies a practical strategy for the design of more effective PtIV prodrugs to conquer drug resistance by tuning both cellular uptake pathways and activation processes.  相似文献   
8.
PtII‐ and PdII‐linked M2L4 coordination capsules, providing a confined cavity encircled by polyaromatic frameworks, exhibit anticancer activities superior to cisplatin against two types of leukemic cells (HL‐60 and SKW‐3) and pronounced toxicity against cisplatin‐resistant cells (HL‐60/CDDP). Notably, the cytotoxic selectivities of the PtII and PdII capsules toward cancerous cells are up to 5.3‐fold higher than that of cisplatin, as estimated through the non‐malignant/malignant‐cells toxicity ratio employing normal kidney cells (HEK‐293). In addition, the anticancer activity of the coordination capsules can be easily altered upon encapsulation of organic guest molecules.  相似文献   
9.
顺铂被广泛用于多种类型的实体肿瘤的临床治疗.DNA是顺铂的主要靶点,顺铂结合会导致DNA损伤并诱发细胞凋亡.然而,顺铂化疗常常受到内在的和获得性的耐药性的限制.在过去30多年里,大量的研究致力于对顺铂耐药性的理解,并且提出了几种导致顺铂耐药性的分子机制.这些机制显示顺铂的耐药性具有多因素特征.本文系统描述和讨论了顺铂的耐药性机制,包括细胞内药物积累的减少,药物去活作用的增强,DNA修复作用,DNA损伤反应和凋亡通路的变化以及一些间接信号通路的调控影响.  相似文献   
10.
There is growing consensus that the clinical therapeutic efficacy of some chemotherapeutic agents depends on their off‐target immune‐modulating effects. Pt anticancer drugs have previously been identified to be potent immunomodulators of both the innate and the adaptive immune system. Nevertheless, there has been little development in the rational design of Pt‐based chemotherapeutic agents to exploit their immune‐activating capabilities. The FPR1/2 formyl peptide receptors are highly expressed in immune cells, as well as in many metastatic cancers. Herein, we report a rationally designed multimodal PtIV prodrug containing a FPR1/2‐targeting peptide that combines chemotherapy with immunotherapy to achieve therapeutic synergy and demonstrate the feasibility of this approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号