首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6007篇
  免费   1490篇
  国内免费   407篇
化学   2962篇
晶体学   14篇
力学   188篇
综合类   32篇
数学   224篇
物理学   4484篇
  2024年   3篇
  2023年   57篇
  2022年   233篇
  2021年   305篇
  2020年   380篇
  2019年   316篇
  2018年   268篇
  2017年   316篇
  2016年   395篇
  2015年   345篇
  2014年   631篇
  2013年   546篇
  2012年   473篇
  2011年   473篇
  2010年   374篇
  2009年   413篇
  2008年   398篇
  2007年   383篇
  2006年   267篇
  2005年   214篇
  2004年   153篇
  2003年   142篇
  2002年   116篇
  2001年   81篇
  2000年   95篇
  1999年   83篇
  1998年   69篇
  1997年   62篇
  1996年   50篇
  1995年   35篇
  1994年   31篇
  1993年   21篇
  1992年   35篇
  1991年   23篇
  1990年   24篇
  1989年   24篇
  1988年   14篇
  1987年   16篇
  1986年   4篇
  1985年   10篇
  1984年   11篇
  1983年   2篇
  1982年   9篇
  1980年   3篇
  1975年   1篇
排序方式: 共有7904条查询结果,搜索用时 31 毫秒
1.
In this study, the synthesis of TaN nanosheets and their application in theranostic agents is reported. After coating polyethylene glycol (PEG) on the TaN nanosheets, the as-synthesized PEG-modified TaN nanosheets (TaN-PEG) show good stability and biocompatibility. Because of their high absorbance in the near-IR region, TaN-PEG can be utilized as photoacoustic imaging contrast agents for tumor imaging. Moreover, TaN-PEG has significant photothermal conversion performance, exhibiting effective laser-induced tumor ablation capability. The TaN-PEG possessing excellent photoacoustic contrast effect and photothermal properties thus have great promise in theranostic applications, especially imaging-guided cancer treatment.  相似文献   
2.
本研究探讨3.0T磁共振成像(MRI)结合X线钼靶诊断乳腺恶性肿瘤的价值。采用回顾性研究方法,选取乳腺肿块患者110例162个病灶,给予3.0T MRI及X线钼靶检查。经病理确诊为恶性病变101个;恶性病灶形态不规则、边缘毛刺、时间-信号强度曲线(TIC)类型Ⅲ型和早期增强率≥60%比例明显高于良性病灶(P<0.05),而分叶状比例和表观扩散系数(ADC)值明显低于良性病变(P<0.05);恶性病变X线钼靶表现:形态不规则、钙化、结构不对称和大导管征比例明显高于良性病变(P<0.05);MRI联合X线钼靶诊断乳腺恶性病变的灵敏性、准确性和阴性预测值明显高于MRI诊断(P<0.05)。3.0T MRI检查结合X线钼靶诊断乳腺恶性肿瘤有较好的价值。  相似文献   
3.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
4.
Visualization of cation dynamics inside a living system represent a major breakthrough at the crossroad of chemistry and cellular physiology. Since the inception of BAPTA-based cellular calcium indicators in the 1980s, generations of chemical and genetically encoded ion indicators spanning the visible spectrum have been developed. In this article, we bring up three emerging concepts in this field: 1. red-shifting cation indicators towards far-red and near-infrared (NIR) channels; 2. directing the indicators to various subcellular localizations; 3. lowering the phototoxicity of indicators for long term recording. These initiatives collectively echo the advocate of 4D cellular physiology, where biological processes within living systems can be panoramically unveiled under 3D, long-term, and multi-channel imaging with unprecedented spatial and temporal resolution. This outlook poses exciting challenges and opportunities for chemists to upgrade the toolkit of fluorescent indicators as key enablers for a new era of imageomics.  相似文献   
5.
《中国物理 B》2021,30(5):56201-056201
A new three-dimensional(3 D) cellular model based on hinging open-cell Kelvin structure is proposed for its negative compressibility property. It is shown that this model has adjustable compressibility and does exhibit negative compressibility for some certain conformations. And further study shows that the images of compressibility are symmetrical about the certain lines, which indicates that the mechanical properties of the model in the three axial directions are interchangeable and the model itself has a certain geometric symmetry. A comparison of the Kelvin model with its anisotropic form with the dodecahedron model shows that the Kelvin model has stronger negative compressibility property in all three directions.Therefore, a new and potential method to improve negative compressibility property can be derived by selecting the system type with lower symmetry and increasing the number of geometric parameters.  相似文献   
6.
7.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   
8.
Nanodiamond (ND) has emerged as an intriguing material in recent years both industrially and in research. During the last decade, ND has furthered its way into the biomedical field, mainly due to its inherent photoluminescent properties. In parallel, the development of advanced biomedical imaging methods and techniques has faced a steep upswing, making these two a ‘perfect match’. The optical and physical properties of ND can be tuned, rendering them highly interesting as versatile biomedical imaging probes. In this short review, we will cover a few of the most recently emerged applications of NDs in biomedical imaging and contemplate on current challenges and future directions.  相似文献   
9.
Photobleaching is a major challenge in fluorescence microscopy, in particular if high excitation light intensities are used. Signal‐to‐noise and spatial resolution may be compromised, which limits the amount of information that can be extracted from an image. Photobleaching can be bypassed by using exchangeable labels, which transiently bind to and dissociate from a target, thereby replenishing the destroyed labels with intact ones from a reservoir. Here, we demonstrate confocal and STED microscopy with short, fluorophore‐labeled oligonucleotides that transiently bind to complementary oligonucleotides attached to protein‐specific antibodies. The constant exchange of fluorophore labels in DNA‐based STED imaging bypasses photobleaching that occurs with covalent labels. We show that this concept is suitable for targeted, two‐color STED imaging of whole cells.  相似文献   
10.
Polymer coating of tissue culture polystyrene (TCPS) surfaces promotes their biofunctionality, which can aid manipulation of cellular functions. However, the effect of the solvent used for polymer coating is yet to be elucidated. In this study, solvent‐treated TCPS surfaces using water, methanol, ethanol, 2‐propanol, and dimethyl sulfoxide are fabricated. Solvent treatment of TCPS surfaces is performed by spreading solvents onto the surfaces and allowing them to dry. Solvent treatment changes the surface roughness and wettability, depending on the kind of solvents. In addition, these surface property changes affected the extension, proliferation, and differentiation of human bone marrow–derived mesenchymal stem cells. These results suggest that solvent selection for polymer coating is crucial in the regulation of cell responses. Further, treatment with an appropriate solvent can result in a more suitable culture environment for modulating cellular functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号