首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5770篇
  免费   887篇
  国内免费   1218篇
化学   5390篇
晶体学   122篇
力学   345篇
综合类   97篇
数学   205篇
物理学   1716篇
  2024年   6篇
  2023年   101篇
  2022年   179篇
  2021年   402篇
  2020年   371篇
  2019年   302篇
  2018年   227篇
  2017年   304篇
  2016年   358篇
  2015年   334篇
  2014年   426篇
  2013年   627篇
  2012年   444篇
  2011年   485篇
  2010年   295篇
  2009年   420篇
  2008年   417篇
  2007年   337篇
  2006年   296篇
  2005年   263篇
  2004年   225篇
  2003年   173篇
  2002年   136篇
  2001年   97篇
  2000年   84篇
  1999年   79篇
  1998年   73篇
  1997年   65篇
  1996年   38篇
  1995年   32篇
  1994年   30篇
  1993年   52篇
  1992年   38篇
  1991年   24篇
  1990年   16篇
  1989年   20篇
  1988年   26篇
  1987年   11篇
  1986年   10篇
  1985年   15篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1973年   2篇
  1971年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有7875条查询结果,搜索用时 125 毫秒
1.
近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。  相似文献   
2.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
3.
Automotive proton exchange membrane fuel cell stacks need to meet manufacturer specified rated beginning-of-life (BOL) performance before being assembled into vehicles and shipped off to customers. The process of “breaking-in” of a freshly assembled stack is often referred to as “conditioning.” It has become an intensely researched area especially in automotive companies, where imminent commercialization of fuel cell electric vehicles (FCEVs) demands a short, energy- and cost-efficient, and practical conditioning protocol. Significant advances in reducing the conditioning time from 1 to 2 days to as low as 4h or less, in some cases without the use of additional inert gases such as nitrogen, and with minimal use of hydrogen, and specialized test stations will be discussed.  相似文献   
4.
Bioelectrochemical dioxygen reduction reaction (ORR) catalyzed by multi-copper oxidases (MCOs) is a process of paramount importance occurring at the cathode of enzymatic biofuel cells (EBFCs), which is an energy harvester that holds promise of self-sustained implantable and wearable medical devices. The MCO biocathode is, however, frequently the limiting factor of a working EBFC. Besides the operational stability issue, enzymatic biocathodes are largely constrained by the relatively low solubility of dioxygen in aqueous solution. As an emerging topic, we here review the introduction of dioxygen-enriching materials to the cathodic bioelectrode for overcoming the dioxygen supply limitation, leading to improved ORR performance.  相似文献   
5.
近年来,基于透射电子显微技术、微纳加工技术和薄膜制造技术的发展,原位液相透射电子显微技术产生,为构建多种纳米级分辨率尺度下的微实验平台,发展新型纳米表征技术和众多领域的相关研究提供了途径.本文首先介绍了应用于原位液相透射电子显微技术的液体腔设计要求,然后介绍了液体腔的发展和典型的制备工艺,最后综述了近年来液体腔透射电子显微镜在纳米粒子成核和生长方面的应用研究,并探讨了该技术前沿发展面临的机遇和挑战.本文将为提高我国先进纳米表征技术和原子精准构筑技术提供相关讨论和支持.  相似文献   
6.
Yi Li 《中国物理 B》2022,31(9):97301-097301
The rapid development of two-dimensional (2D) materials offers new opportunities for 2D ultra-thin excitonic solar cells (XSCs). The construction of van der Waals heterostructure (vdWH) is a recognised and effective method of integrating the properties of single-layer 2D materials, creating particularly superior performance. Here, the prospects of h-BP/h-BAs vdW heterostructures in 2D excitonic solar cells are assessed. We systematically investigate the electronic properties and optical properties of heterogeneous structures by using the density functional theory (DFT) and first-principles calculations. The results indicate that the heterogeneous structure has good optoelectronic properties, such as a suitable direct bandgap and excellent optical absorption properties. The calculation of the phonon spectrum also confirms the well-defined kinetic stability of the heterstructure. We design the heterogeneous structure as a model for solar cells, and calculate its solar cell power conversion efficiency which reaches up to 16.51% and is higher than the highest efficiency reported in organic solar cells (11.7%). Our work illustrates the potential of h-BP/h-BAs heterostructure as a candidate for high-efficiency 2D excitonic solar cells.  相似文献   
7.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。  相似文献   
8.
占兴  熊巍  梁国熙 《化学进展》2022,34(11):2503-2516
随着经济的飞速发展,社会对能源的需求日益扩大,对工业废水的无害化处理也提出了更高的要求。光催化燃料电池 (photocatalytic fuel cell, PFC) 在燃料电池中引入半导体光催化材料作为电极,实现了有机污染物高效降解和同步对外产电的双重功能,在废水无害化与资源化利用方面具有潜在的应用价值。半导体光催化电极是PFC系统高效运行的核心组件,增强其可见光响应和光生载流子分离是提高PFC性能的关键策略。反应器结构设计和运行参数优化也有利于改善PFC性能。本文从PFC基本原理和应用入手,综述了PFC在环境污染物资源化处理中的研究进展,并详细阐述了提高PFC的污染控制性能和产电效率的优化手段,为进一步设计高效稳定的PFC系统并实现其在水污染控制和清洁能源生产中的应用提供理论指导。  相似文献   
9.
The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2O2-photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.  相似文献   
10.
Gaseous CePO2 has been identified by Knudsen effusion mass spectrometry during vaporization of CeO2 and magnesium diphosphate from tungsten double, two‐temperature effusion cell. Structure and molecular parameters of gaseous cerium phosphate under study were determined using quantum chemical calculations. On the basis of equilibrium constants measured for gas‐phase reaction, standard formation enthalpy of CePO2 was determined to be ?508 ± 41 kJ ? mol?1 at the temperature 298 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号