首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2859篇
  免费   313篇
  国内免费   1393篇
化学   4314篇
晶体学   13篇
力学   22篇
综合类   52篇
数学   17篇
物理学   147篇
  2024年   8篇
  2023年   40篇
  2022年   66篇
  2021年   106篇
  2020年   170篇
  2019年   141篇
  2018年   127篇
  2017年   144篇
  2016年   161篇
  2015年   161篇
  2014年   191篇
  2013年   243篇
  2012年   225篇
  2011年   187篇
  2010年   162篇
  2009年   156篇
  2008年   168篇
  2007年   209篇
  2006年   180篇
  2005年   198篇
  2004年   207篇
  2003年   207篇
  2002年   174篇
  2001年   144篇
  2000年   133篇
  1999年   113篇
  1998年   94篇
  1997年   84篇
  1996年   75篇
  1995年   62篇
  1994年   71篇
  1993年   47篇
  1992年   27篇
  1991年   19篇
  1990年   24篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有4565条查询结果,搜索用时 15 毫秒
1.
Pickering乳液以胶体尺寸的固体粒子代替传统表面活性剂作为稳定剂,具有超稳定,生物相容性好以及对环境友好等优点。开关型Pickering乳液可随pH值、CO2/N2浓度、温度、磁场强度及光强度等条件的变化而改变固体乳化剂的表面润湿性,实现在“乳化”与“破乳”之间的快速转换,在非均相催化、乳液聚合等诸多领域有广泛的应用前景。本文全面总结了近年来开关型Pickering乳液的研究进展及其在界面催化系统、液膜处理有机废水、药物的包封与释放等方面的应用。  相似文献   
2.
单气室固体氧化物燃料电池(SC-SOFC)是一种整个电池处在单一气室中,阳极和阴极分别对混合气体中的燃料和氧气进行选择催化产生电动势的特殊结构燃料电池. SC-SOFC因其独特的原理和结构而具有无需密封、易于堆叠、可以快速启动和不易发生积碳等诸多优点,有很大的应用潜力. 作者在SC-SOFC的原理和特点的基础上,系统地总结了SC-SOFC所用材料、微堆结构设计、衰退机制及应用方面的研究进展;以提高SC-SOFC微堆的输出电压和功率为目的,改进预混气体环境下运行的微堆结构,采取星型布局的四电池微堆其输出功率提高到420 mW;随后,逐步改进供气方式,结合计算流体力学数值模拟研究,提出了单路多点供气和双路多点供气模式,成功地将单个SC-SOFC微堆模块的输出功率提升到8.178 W,进而开展了微堆模块外部串并联和与燃烧器的结合实验验证. 研究结果表明,SC-SOFC可以很便捷地连接成微堆模块并产生数瓦的输出功率,未来有望用于以供热为主型的热电联供系统. 作者还借助原位电阻和开路电压的原位同步测试,阐明了Ni在CH4-O2气氛中的反复氧化-还原循环是SC-SOFC发生不可逆衰退的主要机制,这一发现后来催生出氧化-还原法制备多孔金属的新技术.  相似文献   
3.
The Ni? Mo/Mg(OH)2 (NMM) hybrid as an efficient flame retardancy and smoke suppression composite for polypropylene (PP) was synthesized through Ni? Mo co‐precipitation on the surface of Mg(OH)2 (MH) hexagonal nanosheets. Compared to PP/MH, PP/NMM exhibited excellent smoke suppressing and flame retardancy on the heat release rate, total heat release, smoke production rate, total smoke production, CO production rate and total CO production with the same loading. The reduced hazard of PP/NMM was mainly attributed to the high physical barrier effect of compact char residues on heat, smoke and combustible gas. The mechanism study indicated that multiwalled carbon nanotubes (MWCNTs) generated from the catalytic carbonization of PP by the Ni? Mo compound could play the role of “rebar” to strengthen the char residues, avoid the generation of cracks and form highly compact char layer. Furthermore, MgO could facilitate the production of MWCNTs through changing the pyrolysis process of PP and increasing the reaction time between pyrolysis gas and Ni? Mo compound. Hence, the new Ni? Mo/MH catalyst hybrid may explore the potential for solving the tough problem of the flammability and heavy smoke of the polyolefins system.  相似文献   
4.
Alkynes cycloaddition reactions are powerful tools for constructing cyclic molecules with optimal atom efficiency, but these reactions cannot proceed at ambient temperature without transition-metal catalysts. In this work, a heterobimetallic complex featuring an Nb–Fe triple bond, Nb(iPrNPMe2)3Fe–PMe3, has been evaluated as the potential catalyst for acetylene cycloaddition, using density functional theory. The calculated results show that the singlet-state (i.e. ground-state) Nb(iPrNPMe2)3Fe–PMe3 can be applied to benzene synthesis, but is not suitable for cyclobutadiene. Benzene can be obtained easily at room temperature and is the unique product on the singlet potential surface. The irradiation of infrared-red light can drive the excitation of singlet Nb(iPrNPMe2)3Fe–PMe3 to its triplet state. Both benzene and cyclobutadiene can be formed on the triplet reaction potential surface due to their low energy barriers. Therefore, Nb(iPrNPMe2)3Fe–PMe3 is a potential high reactivity heterobimetallic catalyst for the cyclotrimerization of alkynes. In the reaction process, the catalytic active site of Nb(iPrNPMe2)3Fe–PMe3 moves from niobium to iron.  相似文献   
5.
6.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
7.
For the first time, intensification of monooleoyl glycerol (MOG) synthesis has been investigated in an ultrasonic-infrared-wave (USIRW) promoted batch reactor. Esterification of octadecanoic acid (ODA) with glycerol (Gl) has been conducted [using Amberlyst 36 wet catalyst] in three different reactors, namely traditional batch reactor (TBR), infrared wave promoted batch reactor (IRWPBR), and USIRW-promoted batch reactor (USIRWPBR) to assess the relative efficacy. The energy-efficient USIRWPBR remarkably intensifies the ODA-Gl esterification as manifested through superior ODA conversion (92.5 ± 1.25%) compared to that achieved in IRWPBR (79.8 ± 1.2%) and TBR (36.39 ± 1.25%). The most favorable reaction condition for optimum ODA conversion and maximum MOG yield was identified through statistical optimization over a selected parametric range, namely 3-5 Gl/ODA mole ratio, 0.004-0.006 g/mL Amberlyst 36 catalyst concentration, 300-700 rpm impeller speed, and 333-353 K reaction temperature. The present study also reports the formulation and validation of an innovative reaction kinetics, that is, concurrent noncatalytic and heterogeneously catalyzed (CNCHC) reaction mechanism in addition to the conventional heterogeneous kinetic models (LH and Eley-Rideal mechanisms). Under combined USIRW, the CNCHC esterification mechanism could best describe ODA-Gl esterification (R2 = 0.98) compared to LH (R2 = 0.97) and Eley-Rideal (R2 = 0.88) mechanisms. The optimal product (MOG) was characterized by differential scanning calorimetry and thermogravimetric analysis to assess its crystallization property and thermal stability for possible application as plasticizer/fuel additives.  相似文献   
8.
Herein a well-sealed and thermostated kinetics assembly is designed and built, which can run stirred at different reaction temperatures. With the reaction assembly above and the volumetric method together, the hydrogen peroxide (H2O2) decomposition reaction kinetics is systematically investigated under a variety of reaction conditions over a copper-doped buserite-type layer manganese oxide (referred to as Cu-buserite) as a heterogeneous catalyst. The overall second-order rate law is fitted out by the linear regression analysis, with the reaction orders with respect to both H2O2 and Cu-buserite determined to each be equal to 1, and then explicitly explained by the proposed Michaelis-Menten like mechanism. The apparent activation energy Ea is estimated as 33.5 ± 2.5 kJ mol−1.  相似文献   
9.
An acceptorless dehydrogenative strategy for the synthesis of polyfluoroalkylated bis-indoles is described by employing an earth-abundant nickel-based catalytic system under air. The notable feature of the present transformation is the use of bench stable and easily affordable polyfluorinated alcohols without any pre-functionalization for the introduction of precious polyfluoroalkyl groups. The developed straightforward protocol accomplished biologically relevant fluoroalkyl bis-indoles in a sustainable fashion. Extensive DFT study predicts the unique role of indole molecules which stabilizes the transition states during the dehydrogenation process of polyfluorinated alcohols, presumably through non-covalent π⋅⋅⋅π and H-bonding interactions.  相似文献   
10.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号