首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   35篇
  国内免费   21篇
化学   214篇
晶体学   1篇
力学   13篇
综合类   3篇
数学   5篇
物理学   52篇
  2024年   1篇
  2023年   9篇
  2022年   9篇
  2021年   21篇
  2020年   20篇
  2019年   16篇
  2018年   17篇
  2017年   14篇
  2016年   15篇
  2015年   14篇
  2014年   12篇
  2013年   13篇
  2012年   17篇
  2011年   18篇
  2010年   12篇
  2009年   14篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有288条查询结果,搜索用时 125 毫秒
1.
It is important to determine the cause of death in the case of asphyxia. However, it is difficult to conclude death by asphyxia, especially when the deceased has underlying heart disease, because there are often no specific and representative corpse signs for both asphyxia and sudden cardiac death (SCD). The aim of the present work was to investigate the potential of metabolomics to discriminate asphyxia from SCD as the cause of death. A total of thirty male Sprague–Dawley rats were used to construct models of asphyxia, SCD (interfering cause of death), and cervical dislocation (control). Untargeted and widely targeted metabolomics approaches were used to obtain rat pulmonary metabolic profiles in this study. First, the metabolic alterations resulting from asphyxia were explored. There were significant changes found in carbohydrate metabolism, the endocrine system, and the sensory system. Second, we screened potential biomarkers and built classification models to determine the cause of death. Moreover, some biomarkers remained differentiated at 24 h and 48 h postmortem, so the cause of death could still be determined after death. This study showed the application potential of metabolomics to investigate the metabolic changes occurring in the process of death, as well as to determine the cause of death on the basis of metabolic differences even after death.  相似文献   
2.
In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio‐protective molecules, and improve cell‐based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate‐based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.  相似文献   
3.
贺晖  周玲俐  刘震 《化学学报》2021,79(1):45-57
异常的蛋白质表达与疾病的发生与发展密切相关, 因此蛋白质已作为疾病标志物广泛应用于疾病的早期诊断、治疗监测和预后评估. 然而, 临床样本中的蛋白质疾病标志物通常含量极低, 并存在高丰度的基质干扰, 对检测方法的特异性和灵敏度提出挑战. 目前, 蛋白质疾病标志物的检测方法主要是免疫分析. 但是, 免疫分析主要依赖抗体进行特异性识别, 而抗体具有不易制备、稳定性较差和成本高等缺点. 同时, 免疫分析常通过荧光和化学发光等技术实现高灵敏检测, 但存在操作繁琐、光漂白、光谱宽等不足. 分子印迹聚合物已发展成为在特异性和亲和力方面可媲美抗体的仿生识别材料, 且具有容易制备、稳定性好和成本低等优势. 表面增强拉曼散射技术具有超高灵敏度、光谱窄、快速、无损检测等优势而广泛应用于化学和生物分析. 近年来, 分子印迹技术和表面增强拉曼散射技术的结合产生了系列先进的蛋白质检测方法, 展现了独特的优势, 受到了广泛的关注. 本综述旨在介绍该联用分析技术的主要进展, 在分别介绍分子印迹和表面增强拉曼散射及其在蛋白质检测中单独应用的基础上, 着重介绍基于两种技术的蛋白质疾病标志物的检测方法的研究进展. 最后, 对该联用技术的未来发展做了展望.  相似文献   
4.
Lipid metabolism has a significant function in the central nervous system and Alzheimer's disease (AD) is an age-related senile disease characterized by central nerve degeneration. The pathological development of AD is closely related to lipid metabolism disorders. To reveal the influence of Kai-Xin-San (KXS) on lipid metabolism in APP/PSI transgenic mice and potential therapeutic targets for treating AD, brain tissue samples were collected and analyzed by high-throughput lipidomics based on UPLC–Q/TOF-MS. The collected raw data were processed by multivariate data analysis to discover the potential biomarkers and lipid metabolic profiles. Compared with the control wild-type mouse group, nine potential lipid biomarkers were found in the AD model group, of which seven were up-regulated and two were down-regulated. Orally administrated KXS can reverse the changes in these potential biomarkers. Compared with the model group, a total of six differential metabolites showed a recovery trend and may be potential targets for KXS to treat AD. This study showed that high-throughput lipidomics can be used to discover the perturbed pathways and lipid biomarkers as potential targets to reveal the therapeutic effects of KXS.  相似文献   
5.
采用顶空固相微萃取(HS-SPME)与气相色谱-质谱(GC-MS)联用技术,对12例卵巢癌、17例成熟型畸胎瘤与16例正常血液样本的挥发性组分进行研究,对影响提取效果的实验因素进行了优化.在最优条件下共检出28种挥发性组分,以各组分峰面积为变量,用SIMCA-P软件进行偏最小二乘判别分析(PLS-DA),3组样本被明显区分.同时,依据PLS-DA载荷图得到8种具有显著性差异的标志物,其中己醛、蘑菇醇的变化与其在肝癌、肺癌患者血液中的变化一致,可作为诊断卵巢癌和成熟型畸胎瘤的挥发性生物标志物.  相似文献   
6.
In the present study, the voltammetric and impidimetric detection of microRNA‐21, mir‐21 from cell lysates was investigated for the first time by using graphene modified disposable pencil graphite electrodes (GME). The surface characterization of GME was performed via electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Upon passive adsorption of inosine substituted antimicroRNA‐21, antimir‐21 probe, InP, onto the surface of GME and then solid phase hybridization of InP with mir‐21, the target, the electrochemical detection was performed by using Differential Pulse Voltammetry (DPV) and EIS techniques. This developed biosensor, GME has presented a 2.77 times lower detection limit of 2.09 µg/mL (3.12 pmol) with respect to unmodified pencil graphite electrode (GE). Moreover it is capable of analyzing mir‐21 in the cell lysates of mir‐21 positive breast cancer cell line (MCF‐7) contrast to mir‐21 negative hepatoma cell line (HUH‐7). The proposed electrochemical yes‐no system does not require any purification and/or amplification step prior to fast detection of mir‐21 from real samples.  相似文献   
7.
广西合山石村矿超高有机硫煤饱和烃特征分析   总被引:1,自引:0,他引:1  
以合山石村矿超高有机硫煤为研究对象,利用带能谱的扫描电镜(SEM-EDX)及气相色谱(GC)和色谱-质谱联用(GC-MS)分析技术,综合分析探讨了研究区样品中有机质来源、沉积环境及物源输入。结果表明,研究区样品镜质体反射率均值1.76%,全硫含量均值6.01%,其中有机硫含量占比达94.3%,为高成熟度的超高有机硫煤。饱和烃色谱图中未分辨的复杂混合物(UCM)鼓包明显,前峰及双峰型均有分布,前峰型主峰碳为C_(16)、C_(18)、C_(21),双峰型主峰碳为C_(18)、C_(27),化合物降姥鲛烷、脱氢松香烷、咔达烯均有发现,规则甾烷C_(27)、C_(28)、C_(29)均呈"V"型分布,说明沉积母质受藻类等低等水生生物与高等植物双重输入的影响。姥植比参数、C_(31-35)藿烷呈阶梯式递减的分布特征表明在海相碳酸盐台地成煤带中存在一定的氧化条件。扫描电镜中拍摄到的铁含氧硫酸盐、细胞充填环状黄铁矿说明在沉积质晚期成岩阶段受到一定程度热液作用影响。  相似文献   
8.
The development of early and personalized diagnostic protocol with rapid response and high accuracy is considered the most promising avenue to advance point-of-care testing for tumor diagnosis and therapy. Given the growing awareness of the limitations of conventional tissue biopsy for gathering tumor information, considerable interest has recently been aroused in liquid biopsy. Among a myriad of analytical approaches proposed for liquid biopsy, microfluidics-based separation and purification techniques possess merits of high throughput, low samples consumption, high flexibility, low cost, high sensitivity, automation capability and enhanced spatio-temporal control. These characteristics endow microfluidics to serve as an emerging and promising tool in tumor diagnosis and prognosis by identifying specific circulating tumor biomarkers. In this review, we will put our focus on three key categories of circulating tumor biomarkers, namely, circulating tumor cells (CTCs), circulating exosomes, and circulating nucleic acids (cNAs), and discuss the significant roles of microfluidics in the separation and analysis of circulating tumor biomarkers. Recent advances in microfluidic separation and analysis of CTCs, exosomes, and cNAs will be highlighted and tabulated. Finally, the current challenges and future niches of using microfluidic techniques in the separation and analysis of circulating tumor biomarkers will be discussed.  相似文献   
9.
Plant-based foods, like fruits, vegetables, whole grains, legumes, nuts, seeds and other foodstuffs, have been deemed as heart healthy. The chemicals within these plant-based foods, i.e., phytochemicals, are credited with protecting the heart. However, the mechanistic actions of phytochemicals, which prevent clinical endpoints, such as pathological cardiac hypertrophy, are still being elucidated. We sought to characterize the overlapping and divergent mechanisms by which 18 selected phytochemicals prevent phenylephrine- and phorbol 12-myristate 13-acetate-mediated cardiomyocyte enlargement. Of the tested 18 compounds, six attenuated PE- and PMA-mediated enlargement of neonatal rat ventricular myocytes. Cell viability assays showed that apigenin, baicalein, berberine hydrochloride, emodin, luteolin and quercetin dihydrate did not reduce cell size through cytotoxicity. Four of the six phytochemicals, apigenin, baicalein, berberine hydrochloride and emodin, robustly inhibited stress-induced hypertrophy and were analyzed further against intracellular signaling and genome-wide changes in mRNA expression. The four phytochemicals differentially regulated mitogen-activated protein kinases and protein kinase D. RNA-sequencing further showed divergence in gene regulation, while pathway analysis demonstrated overlap in the regulation of inflammatory pathways. Combined, this study provided a comprehensive analysis of cardioprotective phytochemicals. These data highlight two defining observations: (1) that these compounds predominantly target divergent gene pathways within cardiac myocytes and (2) that regulation of overlapping signaling and gene pathways may be of particular importance for the anti-hypertrophic actions of these phytochemicals. Despite these new findings, future works investigating rodent models of heart failure are still needed to understand the roles for these compounds in the heart.  相似文献   
10.
Human Mammary Tumor Virus (HMTV) or Mouse Mammary Tumor Virus holds similarity as an endogenous onco-retrovirus belongs to retroviridae family, predominantly infects the epithelial cell of human as well as mouse. With the recognition of nano-biosensor in nanotechnology, ideal interdigitated electrode (IDE) was genuinely performed for HMTV detection. Aluminium enriched IDE (AlIDE) was fabricated for high performance detection with a cost-effective photolithography technique. In this research, (3-glycidyloxypropyl) trimethoxysilane refined platform was selected to detect the conductivity with HMTV target DNA interaction on the designed AlIDE. Strong binding affinity of streptavidin-biotin with target DNA enhanced the sensitivity by empowering higher number of HMTV probe and target complementation on sensing surface. Furthermore, the target DNA was immobilized on probe modified AlIDE and a quantitative value of 100 aM attained as a lowest detection. A linear with dose-dependent duplex formation was shown with the regression coefficient value of 0.964. Negative control has shown insignificant detection at 10 pM, which justifies the higher fold discrimination with specificity. The excellence of AlIDE performance in detection of HMTV may pave the way for more verification on other diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号