首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   148篇
  国内免费   185篇
化学   485篇
晶体学   49篇
力学   35篇
综合类   3篇
数学   2篇
物理学   339篇
  2023年   6篇
  2022年   22篇
  2021年   21篇
  2020年   28篇
  2019年   22篇
  2018年   22篇
  2017年   24篇
  2016年   29篇
  2015年   29篇
  2014年   26篇
  2013年   59篇
  2012年   49篇
  2011年   44篇
  2010年   57篇
  2009年   52篇
  2008年   55篇
  2007年   57篇
  2006年   56篇
  2005年   22篇
  2004年   43篇
  2003年   34篇
  2002年   11篇
  2001年   11篇
  2000年   17篇
  1999年   14篇
  1998年   16篇
  1997年   14篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   9篇
  1992年   7篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
排序方式: 共有913条查询结果,搜索用时 15 毫秒
1.
Single-walled carbon nanotube (SWNT) horizontal arrays with specific chirality can be enriched using solid carbide catalysts on substrates. However, scale-up production by continuous loading of the solid catalysts onto the substrates is challenging. Described here is the preparation of a floating carbide solid catalyst (FSC) for the controlled growth of SWNTs. The FSC, titanium carbide (TiC) nanoparticle, was directly obtained in the carrier gas phase by decomposition and carbonization of the titanocene dichloride precursor at high temperature. By using the TiC nanoparticle FSC, both SWNT horizontal arrays and randomly distributed networks can be obtained. The chirality of the as-grown SWNTs were thermodynamically controlled to have fourfold symmetry. Further optimization of growth condition resulted in an abundance of (16,8) tubes with about a 74 % content. This FSC chemical vapor deposition (FSCCVD) method has potential for realizing mass growth of SWNTs with controlled structures.  相似文献   
2.
研究高活性和稳定性的非贵金属基析氢催化剂对解决当前能源危机和环境污染问题具有重要意义.碳化钨具有与贵金属Pt类似的d带电子结构,因而成为一类新兴的非贵金属析氢催化剂,受到广泛关注.磷掺杂是提高催化剂析氢活性的有效方法之一,然而目前最常见的构筑磷掺杂方法是使用多金属氧酸盐(POMs,如H3PW12O40),其固定的W/P原子比导致W2C中的掺杂浓度难以调控,并且磷掺杂主要是进入碳载体而不是碳化物本身,从而导致无法明确杂原子对其电催化析氢活性的贡献.本文采用植酸(PA)为磷源设计合成了可控磷掺杂W2C纳米颗粒,并探讨了催化剂组分、杂原子掺杂位置与析氢性能之间的关系.深入研究了磷掺杂碳化钨(WCP)的化学结构和析氢活性.与原始的W2C催化剂相比,WCP具有更高的本征活性、更快的电子转移速率和更多的活性位数量,并且在酸性和碱性条件下均表现出较好的析氢性能.特别是过电位为-200 mV时,WCP催化剂的本征活性在酸性和碱性条件下分别为0.07和0.56 H2 s-1,高出纯W2C(0.01和0.05 H2 S-1)数倍.同时,在电流密度为-10 mA cm-2时,优化后的WCP催化剂在酸性和碱性条件下的析氢过电位分别降低了96和88 mV.XPS及EDS元素分析结果表明,随磷源添加量增加,磷掺杂从碳化钨表面逐渐向内部扩散,进一步说明磷取代位置与析氢活性之间的构效关系,高浓度的表面磷取代可以加速质子捕获过程,从而显著提高其析氢活性,而过量的内部磷取代会破坏W2C结构,降低电子转移速率,从而导致析氢性能下降.利用密度泛函理论计算深入研究了WCP具有较好析氢性能的原因,与内部磷取代相比,表面磷取代会使碳化钨表现出更合适的氢吸附自由能,并且更加有效地降低了氢释放势垒,从而优化了析氢反应动力学.综上,本文为元素掺杂工艺提供了新的思路,同时研究了表面异质原子对析氢活性的关键作用,为该类催化材料的构效关系研究提供了新思路.  相似文献   
3.
Microwave (MW) heating was proven to efficiently solid-synthesize calcium carbide at 1750 °C, which was about 400 °C lower than electric heating. This study focused on the investigation of the diffusion behaviors of graphite and calcium oxide during the solid-state synthesis of calcium carbide by microwave heating and compared them with these heated by the conventional method. The phase compositions and morphologies of CaO and C pellets before and after heating were carefully characterized by inductively coupled plasma spectrograph (ICP), thermo gravimetric (TG) analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that in both thermal fields, Ca and C inter-diffused at a lower temperature, but at a higher temperature, the formed calcium carbide crystals would have a negative effect on Ca diffusion to carbon. The significant enhancement of MW heating on carbon diffusion, thus on the more efficient synthesis of calcium carbide, manifested that MW heating would be a promising way for calcium carbide production, and that a sufficient enough carbon material, instead of CaO, was beneficial for calcium carbide formation in MW reactors.  相似文献   
4.
利用热丝化学气相沉积法(HFCVD)在碳化硅基底上制备金刚石薄膜,采用场发射扫描电子显微镜、拉曼光谱仪、原子力显微镜研究了在不同甲烷浓度条件下制备的金刚石薄膜表面形貌及物相组成,在干摩擦条件下通过往复式摩擦磨损实验测试并计算了已制备金刚石薄膜的摩擦系数和磨损率,结合物相分析及摩擦磨损实验结果分析了甲烷浓度的改变对金刚石薄膜摩擦磨损性能的影响。结果表明,由于甲烷气体含量的升高,金刚石薄膜结晶质量下降,薄膜由微米晶向纳米晶转变。摩擦磨损实验结果显示:3%甲烷浓度条件下制备的金刚石薄膜耐磨性较好,磨损率为2.2×10-7 mm3/mN;5%甲烷浓度条件下制备的金刚石薄膜摩擦系数最低(0.032),磨损率为5.7×10-7 mm3/mN,制备的金刚石薄膜的耐磨损性能相比于碳化硅基底(磨损率为9.89×10-5 mm3/mN)提升了两个数量级,显著提高了碳化硅基底的耐磨性。  相似文献   
5.
We established a gas-phase, elementary reaction model for chemical vapor deposition of silicon carbide from methyltrichlorosilane (MTS) and H2, based on the model developed at Iowa State University (ISU). The ISU model did not reproduce our experimental results, decomposition behavior of MTS in the gas phase in an environment with H2. Therefore, we made several modifications to the ISU model. Of the reactions included in existing models, 236 were lacking in the ISU model, and thus were added to the model. In addition, we modified the rate constants of the unimolecular reactions and the recombination reactions, which were treated as a high-pressure limit in the ISU model, into pressure-dependent rate expressions based on the previous reports (to yield the ISU+ model), for example, H2(+M) → H + H(+M), but decomposition behavior remained poorly reproducible. To incorporate the pressure dependencies of unimolecular decomposition rate constants, and to increase the accuracies of these constants, we recalculated the rate constants of five unimolecular decomposition reactions of MTS using the Rice-Ramsperger-Kassel-Marcus method at the CBS-QB3 level. These chemistries were added to the ISU+ model to yield the UT2014 model. The UT2014 model reproduced overall MTS decomposition. From the results of our model, we confirmed that MTS mainly decomposes into CH3 and SiCl3 at the temperature around 1000°C as reported in the several studies.  相似文献   
6.
Surface group-rich titanium carbide nanosheets (TCNSs) were successfully fabricated by simply etching Ti3AlC2 powders and used as dielectric fillers to promote the dielectric and energy storage performances of poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)-based composites. The PVDF-HFP/TCNS composites realize a high dielectric constant and low dielectric loss of 16.3 and 0.034 at 102 Hz, respectively. Importantly, a high energy storage density (Ue) of 0.367 J cm−3 at 900 kV cm−1 and a high energy storage efficiency (η ≥ 78.9%) at a TCNS content of only 0.5 wt% are obtained, which indicates that incorporating TCNS is an efficient route in enhancing Ue while maintaining a high level η of the PVDF-HFP-based composites. According to detailed characterization results, a mechanism related to the reduction of lamellar crystals in the PVDF-HFP matrix is suggested. The above mechanism restricts the movement of polymer chains near the filler-matrix interface and is proposed to be responsible for the outstanding dielectric and energy storage performances. Consequently, this work provides a simple and effective method for fabricating highly efficient energy storage nanocomposites.  相似文献   
7.
A novel N‐doped MoO 3 @SiC hollow nanosphere has been synthesized through two steps. Due to the first step, N‐doped MoO2@C nanosphere was synthesized using the hydrothermal method and in the second step, Si‐C bonds were formed through the low‐temperature magnesiothermic method and MoO 3 @SiC hollow nanosphere was produced. The prepared nanostructures were identified by various techniques such as IR, XRD, XPS, BET/BJH, SEM/EDS, and Raman spectroscopy. Results show that converting of C to SiC increase the surface area from 17 to 241 m2/g with remarkably decrease in pore diameter. Also, molybdenum is present in the form of MoO2 in carbon catalyst while during magnesiothermic process, it transfers to MoO3 form in the SiC catalyst. The synthesized products were employed as catalysts in oxidative desulfurization of model fuel. The results displayed that MoO 3 @SiC hollow nanostructure shows a superior catalytic activity (99.9%, 40 min) compared to C support (56%, 60 min). Furthermore, the recycling of MoO2@C catalyst shows a dramatic decrease even after the first run, while, SiC support exhibit higher stability during the stronger interaction between molybdenum catalyst and SiC support.  相似文献   
8.
Molybdenum carbide (Mo2C) is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER), due to its structural and electronic merits, such as high conductivity, metallic band states and wide pH applicability. Here, a simple CVD process was developed for synthesis of a Mo2C on carbon cloth (Mo2C@CC) electrode with carbon cloth as carbon source and MoO3 as the Mo precursor. XRD, Raman, XPS and SEM results of Mo2C@CC with different amounts of MoO3 and growth temperatures suggested a two-step synthetic mechanism, and porous Mo2C nanostructures were obtained on carbon cloth with 50 mg MoO3 at 850 °C (Mo2C-850(50)). With the merits of unique porous nanostructures, a low overpotential of 72 mV at current density of 10 mA cm−2 and a small Tafel slope of 52.8 mV dec−1 was achieved for Mo2C-850(50) in 1.0 m KOH. The dual role of carbon cloth as electrode and carbon source resulted into intimate adhesion of Mo2C on carbon cloth, offering fast electron transfer at the interface. Cyclic voltammetry measurements for 5000 cycles revealed that Mo2C@CC had excellent electrochemical stability. This work provides a novel strategy for synthesizing Mo2C and other efficient carbide electrocatalysts for HER and other applications, such as supercapacitors and lithium-ion batteries.  相似文献   
9.
The reactivity of the cationic metal-carbon cluster FeC4+ towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.  相似文献   
10.
Selective hydrogenation of α,β‐unsaturated carbonyls into saturated carbonyls is important to obtain remunerative products. However, it is still a challenge to achieve high activity and selectivity under mild conditions. Herein, Pd, Ir and bimetallic Pd‐Ir nanoparticles were uniformly deposited with high dispersity on the surface of SiC by a facile impregnation method, respectively. The as‐prepared Pd/SiC catalysts efficiently hydrogenate cinnamaldehyde to hydrocinnamaldehyde at room temperature and atmospheric pressure, and the activity of Pd/SiC is observed further enhanced by adding Ir component (conversion of 100%). In addition, the dependence of Pd‐Ir catalyst activity on Pd/Ir molar ratio confirms a synergistic effect between Ir and Pd, which originates from the electron transfer between Pd and Ir.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号