首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2764篇
  免费   852篇
  国内免费   441篇
化学   3028篇
晶体学   101篇
力学   40篇
综合类   14篇
数学   6篇
物理学   868篇
  2024年   4篇
  2023年   53篇
  2022年   134篇
  2021年   131篇
  2020年   272篇
  2019年   189篇
  2018年   177篇
  2017年   153篇
  2016年   291篇
  2015年   246篇
  2014年   205篇
  2013年   314篇
  2012年   235篇
  2011年   173篇
  2010年   184篇
  2009年   151篇
  2008年   139篇
  2007年   159篇
  2006年   149篇
  2005年   126篇
  2004年   88篇
  2003年   115篇
  2002年   31篇
  2001年   42篇
  2000年   29篇
  1999年   26篇
  1998年   16篇
  1997年   49篇
  1996年   27篇
  1995年   41篇
  1994年   16篇
  1993年   19篇
  1992年   12篇
  1991年   9篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有4057条查询结果,搜索用时 62 毫秒
1.
In this study, the synthesis of TaN nanosheets and their application in theranostic agents is reported. After coating polyethylene glycol (PEG) on the TaN nanosheets, the as-synthesized PEG-modified TaN nanosheets (TaN-PEG) show good stability and biocompatibility. Because of their high absorbance in the near-IR region, TaN-PEG can be utilized as photoacoustic imaging contrast agents for tumor imaging. Moreover, TaN-PEG has significant photothermal conversion performance, exhibiting effective laser-induced tumor ablation capability. The TaN-PEG possessing excellent photoacoustic contrast effect and photothermal properties thus have great promise in theranostic applications, especially imaging-guided cancer treatment.  相似文献   
2.
Photocatalytic CO2 reduction to C1 fuels is considered to be an important way for alleviating increasingly serious energy crisis and environmental pollution. Due to the environment-friendly, simple preparation, easy formation of highly-stable metal-nitrogen(M-Nx) coordination bonds, and suitable band structure, polymeric carbon nitride-based single-atom catalysts(C3N4-based SACs) are expected to become a potential for CO2 reduction under visible-light irradiation. In this review, we summarize the recent advancement on C3N4-based SACs for photocatalytic CO2 reduction to C1 products, including the reaction mechanism for photocatalytic CO2 reduction to C1 products, the structure and synthesis methods of C3N4-based SACs and their applications toward photocatalytic CO2 reduction reaction(CO2RR) for C1 production. The current challenges and future opportunities of C3N4-based SACs for photoreduction of CO2 are also discussed.  相似文献   
3.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。  相似文献   
4.
Dong-Yang Liu 《中国物理 B》2022,31(12):128104-128104
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated. Results show that, with adding a small amount of oxygen (oxygen-to-carbon ratio < 5.0%), the crystal quality of diamond is improved, and a suppression effect of residual nitrogen is observed. With increasing ratio of O/C from 2.5% to 20.0%, the hole concentration is firstly increased then reduced. This change of hole concentration is also explained. Moreover, the results of Hall effect measurement with temperatures from 300 K to 825 K show that, with adding a small amount of oxygen, boron and oxygen complex structures (especially B3O and B4O) are formed and exhibit as shallow donor in diamond, which results in increase of donor concentration. With further increase of ratio of O/C, the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration (the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%). This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen. The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration, which is applicable to electronic level of usage.  相似文献   
5.
The lability of B=B, B?P, and B–halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes undergo cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange.  相似文献   
6.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   
7.
Bidentate boron Lewis acids based on 1,8‐diethynylanthracene were synthesised in two steps by initial stannylation of the terminal alkynes and subsequent tin–boron exchange with different chloroboranes. The reactions were very selective, and the target compounds were obtained in high purity and good to excellent yields. Complexation experiments of 1,8‐bis[(diphenylboranyl)ethynyl]anthracene with nitrogen bases (pyridine, pyrimidine, TMEDA) afforded three stable adducts, which were structurally characterised by X‐ray diffraction. Competition experiments demonstrated the selective exchange of guests, and quantum‐chemical calculations provided information on their energetics. NMR experiments at low temperature gave insight into the dynamic behaviour of the TMEDA adduct.  相似文献   
8.
Excessive consumption of substances such as food colorants, exposure to doses of metal ions, antibiotic residues and pesticides residues above maximum tolerance limit have a detrimental effect on human health. Hence in detecting these harmful substances, the development of sensitive, selective and convenient analytical tools is an essential step. Graphene and graphene like 2D graphitic carbon nitride have shown great promise in the development of electrochemical sensors for determining the levels of these substances in different samples. In this paper, graphene and graphene like 2D graphitic carbon nitride applications on the determination of various food colorants in foods and drinks such as azo dyes (tartrazine, allura red, amaranth, carmine and sunset yellow); metal ions contaminants, antibiotic and pesticide residues in the environment are reviewed.  相似文献   
9.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   
10.
Electron‐deficient small boron rings are unique in their formation of σ‐ and π‐delocalized electron systems as well as the avoidance of “classical” structures with two‐center‐two‐electron (2c,2e) bonds. These rings are tolerant of several skeletal electron numbers, which makes their redox chemistry highly interesting. In the past few decades, a range of stable compounds have been synthesized with various electron numbers in their B3 and B4 cores. The electronic structures were evaluated by quantum‐chemical calculations. On the other hand, the chemistry of these rings is still very much underdeveloped, being generally limited to the protonation and redox reactions of individual systems. The linkage of several B3 and/or B4 ring systems should give compounds with attractive electronic properties, thus leading the way to novel boron‐based materials. By summarizing important experimental and theoretical results, this Review intends to provide the basis for the exploration of the chemistry of these rings and, in particular, their integration into larger molecular architectures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号