首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   77篇
  国内免费   109篇
化学   553篇
晶体学   3篇
力学   3篇
综合类   2篇
物理学   43篇
  2024年   1篇
  2023年   17篇
  2022年   22篇
  2021年   27篇
  2020年   33篇
  2019年   37篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   23篇
  2014年   19篇
  2013年   35篇
  2012年   27篇
  2011年   17篇
  2010年   21篇
  2009年   22篇
  2008年   18篇
  2007年   33篇
  2006年   16篇
  2005年   21篇
  2004年   16篇
  2003年   13篇
  2002年   10篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   15篇
  1997年   10篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1989年   2篇
  1982年   1篇
排序方式: 共有604条查询结果,搜索用时 15 毫秒
1.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   
2.
Asymmetric desymmetrization has been demonstrated to be a powerful strategy for building stereocenters in asymmetric synthesis. Herein, a Pd/Cu catalyzed asymmetric desymmetrization reaction with a simple geminal dicarboxylate is reported. A wide scope of imino esters bearing an aryl or heteroaromatic group were compatible with this bimetallic catalytic system. The reactions proceeded smoothly, giving the desired products in good yields with high to excellent regio-, diastereo-, and enantioselectivity (up to 20 : 1 branched:linear, >20 : 1 dr, >99 % ee). Notably, the reaction favored branched selectivity, which is unusual for the Pd-catalyzed allylic alkylation reaction. In addition, the standard product could be easily transformed to other valuable molecules such as chiral allylic alcohols, carbamates, and organic boron compounds. Furthermore, DFT calculations were conducted to explain the origin of the branched selectivity.  相似文献   
3.
4.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   
5.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   
6.
This study reports a promising method of solid-phase extraction for determining the toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene in water samples by gas chromatography–mass spectrometry (GC–MS). Prior to this procedure, the magnesium–aluminum bimetallic hydroxides modified with sodium dodecylbenzenesulfonate (Mg/Al-SDBS-LDH) were prepared and served as the novel solid-phase extractant. The Mg/Al-SDBS-LDH has advantage of good hydrophobicity and larger spacing which facilitates the monoaromatic hydrocarbons (MAHCs) into the interlayer for adsorption. As a result, the seven MAHCs in 500 mL water samples were enriched greatly, and the theoretical enrichment factor reached to 125 times. Under the optimized conditions of solid-phase extraction (SPE) and GC–MS, the mass concentration of each MAHC (0.005–10, 0.01–10, or 0.05–10 ng/mL) had a fine linear relationship with peak area. The correlation coefficients were more than 0.995. The detection limits were between 0.001 and 0.01 ng/mL, and the RSD were between 3.1% and 6.6%. The method had been applied to determine the seven MAHCs in the Dongfengqu river water and laboratory wastewater of Chengdu University of Technology successfully.  相似文献   
7.
Synthesis of continuous spinnable carbon nanotube (CNT) fibers is the most promising method for producing CNT fibers for commercial applications. The floating-catalyst chemical vapor deposition (FC-CVD) method is a rapid process that achieves catalyst formation, CNT nucleation and growth, and aerogel-like sock formation within a few seconds. However, the formation mechanism is unknown. Herein, the progress of CNT fiber formation with bimetallic catalysts was studied, and the effect of catalyst composition to CNT fiber synthesis and their structural properties was investigated. In the case of bimetallic catalysts, the carbon source rapidly decomposes and generates various secondary hydrocarbon species, such as CH4, C2H4, C2H2, C3H6, and C4H10 whereas monometallic catalysts generate only CH4 and C2H4 on decomposition. CNT fiber formation with Fe1Ni0 begins about 400 mm from the reactor entrance, whereas CNT formation with Fe0.8Ni0.2 and Fe0.5Ni0.5 begins at about 500 and 300 mm, respectively. The formed CNT bundles and individual CNTs are oriented along the gas flow at these locations. The enhanced rate of fiber formation and lowering of growth temperature associated with bimetallic catalysts is explained by the synergistic effects between the two metals. The synthesized CNTs become predominantly semiconducting with increasing Ni contents.  相似文献   
8.
Cu@Pt nanoparticles (NPs) are experimentally regarded as improved catalysts for NOx storage/reduction, with higher activities and selectivities compared with pure Pt or Cu NPs, and with inverse Pt@Cu NPs. Here, a density functional theory-based study on such NP models with different sizes and shapes reveals that the observed enhanced stability of Cu@Pt compared with Pt@Cu NPs is due to energetic reasons. On both types of core@shell NPs, charge is transferred from Cu to Pt, strengthening the NP cohesion energy in Pt@Cu NPs, and spreading charge along the surface in Cu@Pt NPs. The negative surface Pt atoms in the latter diminish the NO bonding owing to an energetic rise of the Pt bands, as detected by the appliance of the d-band model, although other factors, such as atomic low coordination or the presence of an immediate subsurface Pt atom do as well. A charge density difference analysis discloses a donation/back-donation mechanism in the NO adsorption.  相似文献   
9.
The aim of this research was to study the efficiency of polyvinyl alcohol (PVA)-modified graphene oxide (GO) as a supporting material for catalysts that oxidize formic acid. The active metal catalysts (e.g., Pt and Pd) were electrodeposited on PVA/GO surfaces. The morphologies of the prepared catalysts were characterized by scanning electron microscopy and transmission electron microscopy, while their chemical compositions were identified by X-ray diffraction and X-ray photoelectron spectroscopy. The results show that compared with the other catalysts on GO, the prepared active PtPd alloy catalyst nanoparticles with 11.49–20.73 nm sizes were well dispersed on the PVA/GO surfaces. Electrochemical results indicate that the activities of the catalysts with PVA provided a higher current density than that of the catalysts without PVA. The bimetallic 3Pt3Pd/PVA/GO catalyst showed the greatest catalytic activity, stability, and CO oxidation when compared to those of other catalysts. The electronic, morphological, and structural properties promote the mass-charge transfer through the interaction. These results indicate that the PVA-modified GO provides a suitable site for active bimetallic catalyst surfaces, resulting in excellent formic acid oxidation and high CO elimination. The 3Pt3Pd/PVA/GO electrocatalyst is promising for enhancing formic acid oxidation.  相似文献   
10.
The objective of the tandem hydroformylation-hydrogenation of alkenes to corresponding alcohols was to design an efficient and stable heterogeneous catalyst. To this end, a series of novel heterogeneous graphitic carbon nitride (g-CN) supported bimetallic Rh−Co nanoparticle catalysts (Rh−Co/g-CN) were prepared and subsequently studied for this one-pot two-step reaction. The lamellar structure makes Rh and Co nanoparticles with diameters of <1 nm and 20 nm, respectively, homogeneously deposited on the surface of g-CN layers, exhibit remarkable conversion of styrene (99.9 %) and chemoselectivity for alcohol (87.8 %). More importantly, Co nanoparticles are found to play an important role in the improvement of the chemoselectivity for alcohol due to the formation of catalytic active species [HCo(CO)y]. Besides the detailed investigation of the catalytic properties of Rh−Co/g-CN under different reaction conditions, the reuse of Rh−Co/g-CN was conducted for five times and no evident decrease in the activity and chemoselectivity was observed. Therefore, we expect that this work could offer an initial insight into g-CN-based heterogeneous catalyst on the tandem hydroformylation-hydrogenation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号