首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   10篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 109 毫秒
1
1.
Bergenin is the major component of Ardisia creanta sims and Rodgersia sambucifolia hemsl with many biological activities. Although bergenin has been used to treat human diseases in China for man years, there is no report regarding its metabolism. This is the first report to separate and identify the metabolites of bergenin in vivo. In the study, HPLC/Q‐TOF‐MS/MS was used to investigate the metabolites of bergenin in vivo by analyzing the rat body fluid and feces samples. Three metabolites of bergenin were finally identified by the TIC chromatograms, and the structures were also confirmed by their MS2 spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
Bergenia (Saxifragaceae) genus is native to central Asia and encompasses 32 known species. Among these, nine are of pharmacological relevance. In the Indian system of traditional medicine (Ayurveda), “Pashanabheda” (stone breaker) is an elite drug formulation obtained from the rhizomes of B. ligulata. Bergenia species also possess several other biological activities like diuretic, antidiabetic, antitussive, insecticidal, anti-inflammatory, antipyretic, anti-bradykinin, antiviral, antibacterial, antimalarial, hepatoprotective, antiulcer, anticancer, antioxidant, antiobesity, and adaptogenic. This review provides explicit information on the traditional uses, phytochemistry, and pharmacological significance of the genus Bergenia. The extant literature concerned was systematically collected from various databases, weblinks, blogs, books, and theses to select 174 references for detailed analysis. To date, 152 chemical constituents have been identified and characterized from the genus Bergenia that belong to the chemical classes of polyphenols, phenolic-glycosides, lactones, quinones, sterols, tannins, terpenes, and others. B. crassifolia alone possesses 104 bioactive compounds. Meticulous pharmacological and phytochemical studies on Bergenia species and its conservation could yield more reliable compounds and products of pharmacological significance for better healthcare.  相似文献   
3.
Glucuronidation plays critical role in the elimination of bergenin; however the metabolic mechanism of UDP‐glucuronosyltransferases (UGTs) in the process remains to be investigated. In this study, the kinetics of bergenin glucuronidation by pooled human liver microsomes (HLMs) and 12 recombinat UGT isozymes were investigated. The glucuronidation of bergenin can be shown in HLMs with a Km value of 231.62 ± 14.08 µm and a Vmax value of 2.17 ± 0.21 nmol/min/(mg protein). Among the 12 human UGTs investigated, UGT1A1 was identified as the major isoform catalyzing the glucuronidation of bergenin [Km value of 200.37 ± 26.73 µm and Vmax value of 1.88 ± 0.26 nmol/min/(mg protein)]. The bergenin glucuronosyltransferase activities in HLMs and UGT1A1 were inhibited by phenylbutazone, estradiol and bilirubin. The results demonstrate that bergenin glucuronidation in HLMs is specifically catalyzed by UGT1A1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
A highly sensitive, simple and selective high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and applied to the determination of bergenin concentration in human plasma. Bergenin and the internal standard (IS) thiamphenicol in plasma were extracted with ethyl acetate, separated on a C(18 )reversed-phase column, eluted with mobile phase of acetonitrile-water, ionized by negative ion pneumatically assisted electrospray and detected in the multi-reaction monitoring mode using precursor --> product ions of m/z 327.1 --> 192 for bergenin and 354 --> 185.1 for the IS, respectively. The linear range of the calibration curve for bergenin was 0.25-60 ng mL(-1), with the lowest limit of quantification of 0.25 ng mL(-1), and the intra/inter-day relative standard deviation (RSD) was less than 10%. The method is suitable for the determination of low bergenin concentration in human plasma after therapeutic oral doses, and has been first and successfully used for its pharmacokinetic studies in healthy Chinese volunteers.  相似文献   
5.
高效毛细管电泳测定虎耳草属植物中虎耳草素含量   总被引:1,自引:0,他引:1  
以苯乙胺为内标,建立了高效毛细管电泳法(HPCE)测定虎耳草属植物中虎耳草素含量的方法.讨论了缓冲溶液体系、pH值及缓冲液浓度对分离的影响.结果表明,以10mmol/L硼砂-盐酸缓冲液(pH9.00)为分离介质,虎耳草素标准品与内标实现基线分离,且实验结果线性关系良好(r=0.9989),日内和日间相对标准偏差分别为1.7%和4.6%.  相似文献   
6.
应用荧光光谱研究了岩白菜素与牛血清白蛋白(BSA)分子间的相互作用.结果表明,岩白菜素对BSA内源荧光的猝灭机制属于形成化合物所引起的静态猝灭,猝灭常数Ksv为1.905×104L.mol-1;岩白菜素与BSA反应的结合常数为2.083×104,结合位点数为1.由热力学参数确定了岩白菜素与牛血清白蛋白的结合作用主要为静电作用.实验还发现随着岩白菜素的加入,BSA的猝灭值与岩白菜素浓度在1.5×10-5~1.5×10-4mol.L-1的范围内呈良好的线性关系,检出限2.0×10-6mol.L-1,可用于岩白菜素的测定.  相似文献   
7.
A validated reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the determination of bergenin in rat plasma. Bergenin in rat plasma was extracted with methanol, which also acted as a deproteinization agent. Chromatographic separation of bergenin was performed on a C(18) column, with a mobile phase of methanol-water (22:78, v/v) at a flow-rate of 0.8 mL/min and an operating temperature of 40 degrees C, and UV detection was set at 220 nm. The calibration curve was linear over the range 0.25-50 microg/mL (r = 0.9990) in rat plasma. The limit of quantification was 0.25 microg/mL using a plasma sample of 100 microL. The extraction recoveries were 83.40 +/- 6.02, 81.49 +/- 2.40 and 72.51 +/- 2.64% at concentrations of 0.5, 5 and 50 microg/mL, respectively. The intra-day and inter-day precision and accuracy were validated by relative standard deviation (RSD%) and relative error (RE%), which were in the ranges 3.74-9.91 and -1.6-8.0%. After intravenous administration to rats at the dose of 11.25 mg/kg, the plasma concentration-time curve of bergenin was best conformed to a two-compartment open model. The main pharmacokinetic parameters indicated that bergenin exhibited a wide distribution and moderate elimination velocity in rat.  相似文献   
8.
A sensitive and selective liquid chromatographic–tandem mass spectrometric (LC–MS/MS) method for the determination of bergenin and its phase II metabolite in rat plasma, bile and urine has been developed. Biological samples were pretreated with protein precipitation extraction procedure and enzymatic hydrolysis method was used for converting glucuronide metabolite to its free form bergenin. Detection and quantitation were performed by MS/MS using electrospray ionization and multiple reaction monitoring. Negative electrospray ionization was employed as the ionization source. Sulfamethoxazole was used as the internal standard. The separation was performed on a reverse‐phase C18 (250 × 4.6 mm, 5 μm) column with gradient elution consisting of methanol and 0.5% aqueous formic acid. The concentrations of bergenin in all biological samples were in accordance with the requirements of validation of the method. After oral administration of 12 mg/kg of the prototype drug, bergenin and its glucuronide metabolite were determined in plasma, bile and urine. Bergenin in bile was completely excreted in 24 h, and the main excreted amount of bergenin was 97.67% in the first 12 h. The drug recovery in bile within 24 h was 8.97%. In urine, the main excreted amount of bergenin was 95.69% in the first 24 h, and the drug recovery within 24 h was <22.34%. Total recovery of bergenin and its glucuronide metabolite was about 52.51% (20.31% in bile within 24 h, 32.20% in urine within 48 h). The validated method was successfully applied to pharmacokinetic and excretion studies of bergenin.  相似文献   
9.
The rhizomes of Astilbe rivularis, commonly known as ‘Thulo Okhati’ are widely used in Nepal as tonic for uterine and menstrual disorders. In our preliminary study, the 70% MeOH extract of the rhizomes showed potent antioxidant activity. Hence, present study was aimed for the isolation of potent antioxidant constituents. Bergenin (1), 11-O-galloylbergenin (2), (+)-catechin (3), (?)-catechin (4), (?)-afzelechin (5), (?)-epiafzelechin (6) and 2-(β-D-glucopyranosyloxy)-4-hydroxylbenzenacetonitrile (7) were isolated from the rhizomes. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these isolated compounds were evaluated for their in vitro antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. 11-O-Galloylbergenin (2), (+)-catechin (3), (?)-catechin (4), (?)-afzelechin (5) and (?)-epiafzelechin (6) showed potent antioxidant activity.  相似文献   
10.
Abstract

The rhizomes of Bergenia ciliata (B. ciliata, Family: Saxifragaceae) are widely used for treating gastric ulcers in folk medicine in Asia. It was hypothesized that anti-ulcer activity of B. ciliata is due to its anti-Helicobacter pylori (H. pylori) activity. The anti-H. pylori activity was investigated on six clinical bacterial isolates using agar well-diffusion and broth micro-dilution methods. The anti-H. pylori activity of amoxicillin (standard) was the highest (Zone of inhibition; ZI?=?25?mm, minimum inhibitory concentration; MIC=0.125?µg/µL) whereas among all the extracts of the rhizomes, methanol extract showed the highest activity (ZI?=?16?mm, MIC?=?12.50?µg/µL). Bioassay guided isolation of methanol extract using chromatographic and crystallization techniques isolated bergenin (ZI?=?21mm, MIC?=?0.391µg/µL) as constituent responsible for anti-H. pylori activity. The present study describes for the first time anti-H. pylori activity and possible mechanism of anti-ulcer properties of rhizomes of B. ciliata.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号