首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3639篇
  免费   291篇
  国内免费   639篇
化学   4309篇
晶体学   27篇
力学   9篇
综合类   22篇
数学   1篇
物理学   201篇
  2024年   2篇
  2023年   29篇
  2022年   63篇
  2021年   90篇
  2020年   192篇
  2019年   144篇
  2018年   111篇
  2017年   132篇
  2016年   136篇
  2015年   150篇
  2014年   200篇
  2013年   357篇
  2012年   252篇
  2011年   203篇
  2010年   183篇
  2009年   211篇
  2008年   210篇
  2007年   195篇
  2006年   192篇
  2005年   174篇
  2004年   187篇
  2003年   177篇
  2002年   114篇
  2001年   87篇
  2000年   63篇
  1999年   70篇
  1998年   69篇
  1997年   43篇
  1996年   62篇
  1995年   63篇
  1994年   62篇
  1993年   72篇
  1992年   53篇
  1991年   38篇
  1990年   27篇
  1989年   23篇
  1988年   23篇
  1987年   18篇
  1986年   20篇
  1985年   10篇
  1984年   16篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1972年   1篇
排序方式: 共有4569条查询结果,搜索用时 46 毫秒
1.
合成了一种多级孔芳香骨架材料(PAF-70); 使用由氨基修饰过的单体, 应用该合成策略得到了同样具有窄分布介孔的含有氨基活性位点的PAF材料, 并通过硫脲单体与其氨基活性位点的反应, 将硫脲基团引入PAF-70材料中, 获得了含有硫脲催化位点的材料(PAF-70-thiourea). 氮气吸附-脱附测试结果显示, PAF-70存在孔径分布较窄的介孔, 介孔孔径为3.8 nm, 与模拟计算值(约3.7 nm)吻合. 热重分析结果表明, PAF-70具有很高的热稳定性. PAF-70在大多数溶剂中可以稳定存在, 具有良好的化学稳定性. 将PAF-70-thiourea作为催化剂, 应用在N-溴代琥珀酰亚胺(NBS)氧化醇类的反应中, 其表现出较高的催化活性、 较高的稳定性和广泛的底物适用性. 与含有相同硫脲催化位点的金属有机框架(MOF)材料(IRMOF-3-thiourea)作为催化剂对比, 进一步证实PAFs材料非常适合作为催化有机反应的固载平台.  相似文献   
2.
A detailed study of the geometry, aromatic character, electronic and magnetic properties for a series of positively charged N-doped polycyclic aromatic hydrocarbons (PAHs) was performed. Magnetic properties of the examined molecules were analyzed by means of the magnetically induced current density calculated using the diamagnetic-zero version of the continuous transformation of origin of current density (CTOCD-DZ) method. The comparative study of the local aromaticity of the studied molecules was performed using several different indices: energy effect (ef), harmonic oscillator model of aromaticity (HOMA) index, six centre delocalization index (SCI) and nucleus independent chemical shifts (NICS). The presence of N-atoms in the inner rings was found to cause a planarity distortion in the studied N-doped systems. The geometric changes and charged nature of the studied N-doped systems do not significantly influence the current density and the local aromaticity distribution in comparison with the corresponding parent benzenoid hydrocarbons. The present study demonstrates how quantum chemical calculations can be used for rational design of novel PAHs and for fine tuning of their properties.  相似文献   
3.
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2/N2 and CO2/N2. The membrane with Br? as a counter ion in the framework exhibited a H2/N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4?, the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2/N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.  相似文献   
4.
This review critically evaluates the plastic accumulation challenges and their environmental (primarily) and human (secondarily) impacts. It also emphasizes on their degradation and fragmentation phenomena under marine conditions. In addition, it takes into account the leachability of the various chemical substances (additives) embedded in plastic products to improve their polymeric properties and extend their life. Regardless of their effectiveness in enhancing the polymeric function of plastic products, these additives can potentially contaminate air, soil, food, and water. Several findings have shown that, regardless of their types and sizes, plastics can be degraded and/or fragmented under marine conditions. Therefore, the estimation of fragmentation and degradation rates via a reliable developed model is required to better understand the marine environmental status. The main parameter, which is responsible for initiating the fragmentation of plastics, is sunlight/UV radiation. Yet, UV- radiation alone is not enough to fragment some plastic polymer types under marine conditions, additional factors are needed such as mechanical abrasion. It should be also mentioned that most current studies on plastic degradation and fragmentation centered on the primary stages of degradation. Thus, further studies are needed to better understand these phenomena and to identify their fate and environmental effects.  相似文献   
5.
A novel solid-phase microextraction coating of phosphorous-containing titanium oxide composite was developed using titanium fiber as a support and a titanium source by hydrothermal oxidation in a phosphoric acid solution containing hydrogen peroxide. The morphology of the fiber coatings was controlled by the conditions of the hydrothermal oxidation reaction. The oriented nanofiber coating was employed to extract several types of representative aromatic analytes. The experimental results demonstrated that the as-prepared fiber exhibited excellent extraction efficiency toward polycyclic aromatic hydrocarbons. Combined with high-performance liquid chromatography with ultraviolet detection, main extraction conditions were optimized, including pH, ionic strength, extraction temperature, stirring rate, extraction time and desorption time. The established method presented good linearity from 0.05 to 200 μg/L with limit of detection ranging from 0.012 to 0.126 μg/L. This convenient and green procedure was suitable for the selective extraction and determination of typical polycyclic aromatic hydrocarbons in environmental water samples. The relative recoveries of 85.8–112% were obtained for the determination of target polycyclic aromatic hydrocarbons in water samples spiked with 5.0 and 15.0 μg/L. Moreover, the as-prepared fiber showed at least 210 extraction/desorption cycles due to its high mechanical and chemical stability.  相似文献   
6.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   
7.
In this work, a fast and simple magnetic dispersive solid phase extraction methodology was developed utilizing Ag@magnetite nanoparticles@graphene nanocomposite as an efficient magnetic nanosorbent for preconcentration and determine of five aromatic amines in water samples. The sorbent was characterized by diverse characterization techniques. After the extraction, high‐performance liquid chromatography with UV detection was utilized to analysis the aromatic amines. The effects of different factors on the extraction process were studied thoroughly via design of experiment and desirability function. Detection limits and linear dynamic ranges were obtained in the range of 0.10–0.20 and 0.3–300 μg/L, respectively. The relative standard deviations (n = 5) were in the range of 4.3–6.5%. Eventually, the method was employed for determination of target aromatic amines in various water samples.  相似文献   
8.
A rosin-based ester tertiary amine salt (RETAS) cationic surfactant was obtained using natural rosin as raw material. GC-MS of RETAS was detailed analyzed. The pH-responsive mechanism of rosin-based ester tertiary amine (RETA) and RETAS was confirmed by applying theoretical calculations about electrostatic potential maps of RETA and RETAS cation using Gaussian software. Mixed system surfactants were obtained by blending RETAS cationic surfactant with sodium dodecyl benzene sulfonate (SDBS) anionic surfactant. The binary mixed surfactant systems of RETAS and SDBS had obvious synergistic effect. The γcmc and CMC were 39.40?mN/m and 0.56?mmol/L at the optimum molar fraction of RETAS (α)?=?0.6, respectively. The stability time of emulsion with the optimum mixed system as emulsifier increased to 309?s at α?=?0.6. The emulsifying capacity of RETAS was much better than that of RETA. RETAS had pH-responsive targeted release and the optimum mixed system showed a relatively sustained drug release by using doxorubicin (DOX) as a model drug. These results indicate that RETAS surfactant and mixed system surfactant are both promising for applications in drug delivery and emulsification.  相似文献   
9.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   
10.
A unified low‐temperature reaction mechanism on the formation of acenes, phenacenes, and helicenes—polycyclic aromatic hydrocarbons (PAHs) that are distinct via the linear, zigzag, and ortho‐condensed arrangements of fused benzene rings—is revealed. This mechanism is mediated through a barrierless, vinylacetylene mediated gas‐phase chemistry utilizing tetracene, [4]phenacene, and [4]helicene as benchmarks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures. This mechanism opens up an isomer‐selective route to aromatic structures involving submerged reaction barriers, resonantly stabilized free‐radical intermediates, and systematic ring annulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space. Connecting helicene templates to the Origins of Life ultimately changes our hypothesis on interstellar carbon chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号