首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   688篇
  国内免费   498篇
化学   1118篇
晶体学   292篇
力学   13篇
综合类   32篇
数学   2篇
物理学   1958篇
  2024年   1篇
  2023年   27篇
  2022年   49篇
  2021年   55篇
  2020年   96篇
  2019年   61篇
  2018年   80篇
  2017年   105篇
  2016年   117篇
  2015年   122篇
  2014年   193篇
  2013年   223篇
  2012年   275篇
  2011年   362篇
  2010年   277篇
  2009年   268篇
  2008年   235篇
  2007年   223篇
  2006年   206篇
  2005年   107篇
  2004年   114篇
  2003年   61篇
  2002年   36篇
  2001年   26篇
  2000年   16篇
  1999年   10篇
  1998年   12篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有3415条查询结果,搜索用时 15 毫秒
1.
The electronic structure of quantum dots (QDs) including band edges and possible trap states is an important physical property for optoelectronic applications. The reliable determination of the energy levels of QDs remains a big challenge. Herein we employ cyclic voltammetry (CV) to determine the energy levels of three types of ZnO QDs with different surface ligands. Coupled with spectroscopic techniques, it is found that the onset potential of the first reductive wave is likely related to the conduction band edges while the first oxidative wave originates from the trap states. The determined specific energy levels in CV further demonstrates that the ZnO QDs without surface ligands mainly have oxygen interstitial defects whilst the ZnO QDs covered with ligands contain oxygen vacancies. The present electrochemical method offers a powerful and effective way to determine the energy levels of wide bandgap ZnO QDs, which will boost their device performance.  相似文献   
2.
Undoped and europium (III)-doped ZnO nanoparticles were prepared by a sonochemical method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analysis. The crystalline sizes of undoped and 3% Eu-doped ZnO were found to be 16.04 and 8.22 nm, respectively. The particle size of Eu-doped ZnO nanoparticles was much smaller than that of pure ZnO. The synthesized nanocatalysts were used for the sonocatalytic degradation of Acid Red 17. Among the Eu-doped ZnO catalysts, 3% Eu-doped ZnO nanoparticles showed the highest sonocatalytic activity. The effects of various parameters such as catalyst loading, initial dye concentration, pH, ultrasonic power, the effect of oxidizing agents, and the presence of anions were investigated. The produced intermediates of the sonocatalytic process were monitored by GC–Mass (GC–MS) spectrometry.  相似文献   
3.
Hybrid nanoparticles (HNPs) with zinc oxide and polymethyl metha acrylate (inorganic/ polymer) were synthesized through the exploitation of ultrasound approach. The synthesized HNPs were further characterized employing transmission electron microscopy and x-ray diffraction. ZnO-PMMA based HNPs exhibit excellent protection properties to mild steel from corrosion when gets exposed to acidic condition. Electrochemical impendence spectroscopy (EIS) analysis was accomplished to evaluate the corrosion inhibition performance of MS panel coated with 2 wt% or 4 wt% of HNPs and its comparison with bare panel and that of loaded with only standard epoxy coating., Tafel plot and Nyquist plot analysis depicted that the corrosion current density (Icorr) decreases from 16.7 A/m2 for bare material to 0.103 A/m2 for 4% coating of HNPs. Applied potential (Ecorr) values shifted from negative to positive side. These results were further supported by qualitative analysis. The images taken over a period of time indicated the increase in lifetime of MS panel from 2 to 3 days for bare panel to 10 days for HNPs coated panel, showing that ZnO-PMMA HNPs have potential application in metal protection from corrosion by forming a passive layer.  相似文献   
4.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
5.
Copper-doped zinc oxide nanoparticles (NPs) CuxZn1−xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 μM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.  相似文献   
6.
以Zn(NO3)2· 6H2O和C6H12N4为原材料,采用二步水热法在碳纤维布上合成了形貌尺寸均匀的ZnO超细纳米线阵列。用 X 射线衍射(XRD)和扫描电镜(SEM)对其晶体结构和形貌进行了表征,利用恒流充放电测试等手段对其进行电化学性能测试。测试结果表明,材料表现出优异的电化学性能。在200 mA/g的电流密度下循环150次后,ZnO超细纳米线阵列仍然约有730 mAh/g的充放电比容量,库伦效率保持在95%以上。在1 200 mA/g的大倍率条件下,材料的充放电比容量依旧可达481 mAh/g左右,表现出十分良好的循环稳定性和可逆性能,是一种较为理想的锂离子电池负极复合材料。  相似文献   
7.
Photodegradation of organic pollutants strongly depends on design of metal oxide semiconductor photocatalysts. Graphene, if composited with ZnO, can effectively enhance its photocatalytic performance for the eradication of pollutants from aqueous medium. Here in, ZnO-rGO is reported as highly active catalyst for degradation of methylene blue. A 200-mg/L solution of methylene blue dye was completely degraded within 1 h in comparison to 74% and 56% degradation over ZnO and rGO, respectively. The commonly used mechanisms of heterogeneous catalytic reactions, the Langmuir-Hinshelwood mechanism, and the Eley-Rideal mechanisms, were used to describe the reaction kinetics. The Langmuir-Hinshelwood mechanism was found as more favorable in this study. Apparent activation energy, Eap, true activation energy, ET, entropy, ΔS, and enthalpy, ΔH were calculated as 36.2 kJ/mol, 13.1 kJ/mol, 197.5 J/mol, and 23.1 kJ/mol, respectively.  相似文献   
8.
A facile hydrothermal method to synthesize flower-like Sn-doped ZnO (FLSn-ZnO) nanostructures is described. The obtained hierarchical architectures of FLSn-ZnO are found to be assembled with abundant regular-shaped nanosheets and nanoparticles. A possible formation mechanism is proposed on the base of a series of control experiments. The tests show that FLSn-ZnO architectures exhibit higher photocatalytic activity in the degrading Rhodamine B and tetracycline aqueous solution than pure ZnO under UV-light irradiation. And photocurrent response and photoluminescence of ZnO and FLSn-ZnO demonstrates that in photocatalytic performance, the latter is higher.  相似文献   
9.
A good photocatalyst with high efficiency can be synthesized easily using eco-friendly materials and processes. Our synthesized samples exhibit all of the aforementioned features. In this work, manganese co-doped ZnO at different weight percentages (3, 6, 9, and 15 wt.%) with and without 1.5 wt.% aluminum was synthesized by hydrothermal method, and their photocatalytic activity in aqueous solutions of methyl orange (MO) was investigated under visible light. The structural and optical properties of the samples were characterized using X-ray powder diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and diffuse reflectance spectroscopy. In this work, Mn2+ ions in the 9%Mn/ZnO sample and Mn2+, Al3+ ions in the (9%Mn, 1.5%Al)/ZnO sample calcined at 800 °C were replaced instead with some Zn2+ ions in hexagonal wurtzite structures of ZnO. These structures were found next to each other in the form of a hexagonal shape that created 3D-hexagonal-like ZnO nanostructures. Finally, nanoparticles (NPs) and nano hexagonal-like ZnO nanostructures were, respectively, dispersed on the surface of 3D-hexagonal-like structure of 9%Mn/ZnO and (9%Mn, 1.5%Al)/ZnO. Diffuse reflectance spectroscopy analysis showed that the (9%Mn, 1.5%Al)/ZnO sample had more light absorption than 9%Mn/ZnO. However, contrary to our expectations, the 9%Mn/ZnO sample had better decolorization efficiency (94%) after 60 min under visible light, which could be attributed to a significant increase in the level of recombination by the aluminum ions.  相似文献   
10.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号