首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  国内免费   18篇
化学   42篇
晶体学   2篇
物理学   9篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Piezoelectric materials have received much attention due to their great potential in environmental remediation by utilizing vibrational energy. In this paper, a novel piezoelectric catalyst, CoOx nanoparticles anchored BiFeO3 nanodisk composite, was intentionally synthesized via a photodeposition method and applied in piezocatalytic degradation of rhodamine B (RhB) under ultrasonic vibration. The as-synthesized CoOx/BiFeO3 composite presents high piezocatalytic efficiency and stability. The RhB degradation rate is determined to be 1.29 h−1, which is 2.38 folds higher than that of pure BiFeO3. Via optimizing the reaction conditions, the piezocatalytic degradation rate of the CoOx/BiFeO3 can be further increased to 3.20 h−1. A thorough characterization was implemented to investigate the structure, piezoelectric property, and charge separation efficiency of the CoOx/BiFeO3 to reveal the nature behind the high piezocatalytic activity. It is found that the CoOx nanoparticles are tightly adhered and uniformly dispersed on the surface of the BiFeO3 nanodisks. Strong interaction between CoOx and BiFeO3 triggers the formation of a heterojunction structure, which further induces the migration of the piezoinduced holes on the BiFeO3 to CoOx nanoparticles. The recombination of electron-hole pairs is retarded, thereby increasing the piezocatalytic performance greatly. This work may offer a new paradigm for the design of high-efficiency piezoelectric catalysts.  相似文献   
2.
Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O2•−), hydroxyl radicals (•OH) and holes could increase the photocatalytic activity of Cu/g-C3N4 materials.  相似文献   
3.
采用水热法原位合成了Ru掺杂BiOBr空心微球(Ru/BiOBr)复合光催化剂,并对其进行了XRD、 SEM、 TEM、 EDS、 DRS、 EIS等表征.结果表明,所合成的BiOBr材料是由许多小厚度的交错纳米片自组装而成的,同时Ru纳米颗粒成功负载到BiOBr表面,该复合材料对还原CO_2和降解有机模拟污染物(罗丹明B, RhB)具有良好的光催化性能.当Ru的掺杂量为0.4%时复合材料的光催化活性最佳, 4 h后甲醇产量可达1103μmol/g_(cat),并且60 min内对RhB的降解率达到98%.除此之外,还讨论了复合材料的光催化机理和稳定性.  相似文献   
4.
以硝酸铟作为前驱体,在蒸馏水和乙二胺的混合溶剂中制备出了InOOH纳米晶,详细地考察了反应溶剂及温度对终产物的影响。利用X射线粉末衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电子显微镜(SEM)和透射电镜(TEM)对样品的晶相结构、光吸收性质及其形貌进行了详细的表征。考察了样品在紫外光下及可见光下对液相中的染料罗丹明B(RhB)的光催化降解性能。发现InOOH在紫外光下可以彻底分解RhB,而在可见光下只能使RhB脱色。InOOH在紫外光和可见光下对RhB的分解遵循两种不同的反应机制。  相似文献   
5.
利用光电协同作用可增强TiO2光催化氧化的量子效率[1-3].外加偏压[4-6]是电助光催化过程的一个重要特性,通过对TiO2薄膜电极施加偏压可降低光生电子和空穴的复合速率,不仅可以加速有机污染物的降解,而且还能改变某些底物的降解途径[7].  相似文献   
6.
The homoleptic complexes ZnII(4′‐(2‐(5‐R‐thienyl))‐terpyridine)2(ClO4)2 [R = hydrogen ( 1 ), bromo ( 2 ), methyl ( 3 ), and methoxy ( 4 )] were prepared. Their structures were determined by single‐crystal X‐ray diffraction analyses, and further characterized by high resolution mass, infrared spectra (IR), and elemental analyses. Single crystal X‐ray diffraction analysis showed that ZnII ions in the complexes are both six‐coordinate with N6 coordination sphere, displaying distorted octahedral arrangements. The absorption and emission spectra of the homoleptic ZnII complexes were investigated and compared to those of the parent complex ZnII(4′‐(2‐thienyl))‐terpyridine)2(ClO4)2. The UV/Vis absorption spectra showed that the complexes all exhibit strong absorption component in UV region, moreover, complex 4 has an absorption component in the visible region. Thus, the photocatalytic activities of the complexes in degradation of organic dyes were investigated under UV and visible irradiation.  相似文献   
7.
采用水热法成功制备了MoS2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS2/WO3对罗丹明B(RhB)的光降解效率明显高于纯WO3、片状MoS2/WO3复合半导体。针对球状MoS2/WO3复合半导体,分别研究了MoS2不同负载量(0.5%,1%,2%,5%,10%)对RhB光催化降解性能的影响,结果表明MoS2含量为2%时催化效果最佳。同时,研究了溶液的pH值(pH=1,3,6,7,11)对光催化降解反应活性的影响,结果显示pH=6时降解率最高。当催化剂量增加到1 g·L-1时,30min后RhB降解率达到96.6%。球状MoS2/WO3的瞬态光电流为0.050 6 mA·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   
8.
染料废水的排放对人类健康和生态系统构成严重威胁,光催化技术因其操作简单、绿色环保等优点在解决环境污染问题上已显示出巨大的潜力。类石墨相氮化碳(g-C3N4)由于成本低且具有良好的化学稳定性,被认为是光催化领域最有前景的新型光催化剂之一,但由于单一g-C3N4的比表面积小、可见光吸收能力低、光生电子-空穴复合率高影响了其光催化性能。以邻氨基苯甲腈和尿素为原料,通过高温共聚改性制备高催化活性的g-C3N4-N光催化剂,研究g-C3N4-N在不同pH值、g-C3N4-N投加量和RhB溶液浓度条件下对RhB光催化降解的影响,并结合红外光谱、XRD、BET、UV-Vis对g-C3N4-N光催化降解RhB的机理和染料降解路径进行解析。结果表明,经共聚改性制备的碳化氮为类石墨型纯相g-C3N4-N,具有稳定的光催化活性、大的比表面积和多孔结构,在初始pH值为3时,加入50 mg的g-C3N4-N在可见光条件下光催化降解10 mg·L-1 的RhB可达到最好的光催化降解效果,RhB在暗反应30 min内的吸附去除率可达30%左右,120 min的去除率达到97.7%。在光催化作用下,g-C3N4-N将吸附在光催化剂表面的罗丹明B分子通过快速N-脱乙基过程形成DER、EER和AR等大分子中间体,它们在空穴与·OH和·O-2作用下,共轭结构裂解、开环,生成丁二酸、间苯二酚、丙酸等小分子,脱除的乙基被逐步氧化为乙二醇,这些小分子可以被转化为CO2和H2O。  相似文献   
9.
Fe掺杂g-C3N4的制备及其可见光催化性能   总被引:1,自引:0,他引:1  
以硝酸铁和三聚氰胺为原料制备不同含铁量的Fe 掺杂石墨氮化碳(g-C3N4). 采用X 射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FT-IR)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征. 结果表明,铁以离子形式镶嵌在g-C3N4的结构单元中,影响了g-C3N4的能带结构,增加了g-C3N4对可见光的吸收,降低了光生电子-空穴对的复合几率. 以染料罗丹明B的降解为探针反应系统研究了不同含铁量对g-C3N4在可见光下催化性能的影响. 结果表明,m(Fe)/m(g-C3N4)=0.14%时,制备的Fe 掺杂g-C3N4表现出最佳的光催化性能,120 min 内罗丹明B的降解率高达99.7%,速率常数达到0.026 min-1,是纯g-C3N4的3.2 倍. 以叔丁醇、对苯醌、乙二胺四乙酸二钠为自由基(·OH)、自由基(O2)和空穴(hVB+)的捕获剂,研究了光催化反应机理.  相似文献   
10.
阎松  韩可可  赵琳  张影 《人工晶体学报》2017,46(10):1959-1964
以钨酸铵为钨源,硝酸为沉淀剂,首先通过沉淀法制备前驱体H2 WO4,随后采用热分解H2 WO4法合成六方及单斜晶相WO3催化剂.利用X射线衍射(XRD)、拉曼光谱、差热-热重(TG-DTA)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-Vis DRS)对H2 WO4向WO3转变过程中结构、形貌、组成及光学性质的变化进行研究.结果表明,热处理后前驱体发生如下相变过程:H2 WO4→六方相WO3→六方/单斜相WO3→单斜相WO3.此外,以罗丹明B为模拟污染物,考察不同晶相WO3的光催化活性,结果表明,六方相WO3具有更高的光催化性能,单斜相WO3的活性较低.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号