首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   2篇
物理学   1篇
  2018年   1篇
  2016年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Measurement of myoglobin (Mb) in human blood serum is of great interest for quick diagnosis of acute myocardial infarction (AMI). In this study, a novel fluorescent aptasensor was designed for ultrasensitive and selective detection of Mb, based on target-induced high fluorescence intensity, complementary strand of aptamer (CS), PicoGreen (PG) dye, exonuclease III (Exo III) and silica nanoparticles coated with streptavidin (SNPs-Streptavidin). The developed aptasensor obtains characteristics of SNPs as enhancers of fluorescence intensity, Exo III as an enzyme which selectively digests the 3'-end of double-stranded DNA (dsDNA), PG as a fluorescent dye which could selectively bind to dsDNA and high selectivity and sensitivity of aptamer (Apt) toward its target. In the absence of Mb, no free CS remains in the environment of SNPs-Streptavidin, resulting in a weak fluorescence emission. In the present of Mb, dsDNA-modified SNPs-Streptavidin complex forms, leading to a very strong fluorescence emission. The developed fluorescent aptasensor exhibited high specificity toward Mb with a limit of detection (LOD) as low as 52 pM. In addition, the designed fluorescent aptasensor was efficiently used to detect Mb in human serum.  相似文献   
2.
Many experimental designs, in which nucleic acid conformational changes are of interest, require reliable fluorescence labeling. The appropriate fluorescence probe should have suitable optical properties and, more importantly, should not interfere with the investigated processes. In order to avoid chemical modifications the fluorescence label needs to be associated with nucleic acid via weak non-covalent interactions. There are a number of fluorescent probes that change their fluorescent properties (i.e. their quantum yield and/or spectral characteristics) upon association with nucleic acid. Such probes are frequently used to detect, visualize and follow processes involving nucleic acid and its conformational changes. In order to obtain reliable data regarding macromolecule or aggregate topology a detailed knowledge of probe–nucleic acid interactions on the molecular level is needed. In this paper we show that the association of propidium iodide with DNA alters its conformation and that it selectively labels plasmid fragments and/or its subpopulations in a concentration-dependent meaner. Another dye, PicoGreen, exhibits better properties. It labels nucleic acid uniformly and without any concentration-dependent artifacts.  相似文献   
3.
Label-free Hg2+ aptamer was used as a sensing element and the PicoGreen dye was specific to ultra-sensitive double-stranded DNA (dsDNA), which achieved novel fluorescence assay for detection of both mercury and silver ions. In this aptasensor, Hg2+ bound to thymidine (T) to form T–Hg2+-T base pairs and Ag+ specifically interacted with C–C mismatches to produce C–Ag+–C base pairs. The conformation changes prevented the aptamer from binding to its complementary sequences to form dsDNA and caused a fluorescence intensity decrease with PicoGreen. The change in the fluorescence intensity made it possible to detect both Hg2+ and Ag+ in a dose-dependent manner. The sensing system could detect as low as 5 × 10–8 mol/L of Hg2+ and 9.3 × 10–10 mol/L of Ag+. The fluorescent intensity changes in the system were specific for Hg2+ and Ag+, making this simple and cost-effective method extremely valuable in its future applications in monitoring Hg2+ and Ag+ pollution in environmental analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号