首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   57篇
  国内免费   32篇
化学   142篇
晶体学   2篇
力学   32篇
数学   57篇
物理学   564篇
  2024年   3篇
  2023年   4篇
  2022年   6篇
  2021年   13篇
  2020年   12篇
  2019年   15篇
  2018年   17篇
  2017年   10篇
  2016年   18篇
  2015年   15篇
  2014年   32篇
  2013年   45篇
  2012年   30篇
  2011年   45篇
  2010年   37篇
  2009年   32篇
  2008年   43篇
  2007年   28篇
  2006年   40篇
  2005年   30篇
  2004年   16篇
  2003年   29篇
  2002年   28篇
  2001年   21篇
  2000年   28篇
  1999年   22篇
  1998年   13篇
  1997年   9篇
  1996年   9篇
  1995年   14篇
  1994年   15篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   12篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1978年   7篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1973年   4篇
  1970年   1篇
排序方式: 共有797条查询结果,搜索用时 31 毫秒
1.
A systematic study on forward–backward (FB) multiplicity correlations from large systems to small ones through a multi-phase transport model (AMPT) has been performed and the phenomenon that correlation strength increases with centrality can be explained by taking the distribution of events as the superposition of a series of Gaussian distributions. It is also found that correlations in the \begin{document}$ \eta -\phi $\end{document} plane can imply the shape of the event. Furthermore, long-range correlations originate from the fluctuations associated with the source information. FB correlations allow us to decouple long-range correlations from short-range correlations, and may provide a chance to investigate the α-clustering structure in initial colliding light nuclei as well. It seems the tetrahedron 16O + 16O collision gives a more uniform and symmetrical fireball, that emits the final particles more isotropically or independently in the longitudinal direction, indicating that the forward–backward multiplicity correlation could be used to identify the pattern of α-clustered 16O in future experiments.  相似文献   
2.
3.
《Current Applied Physics》2015,15(3):319-325
Pd is one of the metals suitable for inducing low-temperature crystallization in Ge. However, it is not clear how residual Pd atoms are integrated into the Ge lattice. Therefore, time-differential γ–γ perturbed angular correlations (TDPAC) technique using the 100Pd(→100Rh) nuclear probe produced by recoil implantation has been applied to study the hyperfine interactions of this probe in single-crystalline undoped Ge. A Pd-vacancy complex aligned along the <111> crystallographic direction with a unique interaction frequency of 8.4(5) Mrad/s has been identified. This complex was measured to have a maximum relative fraction of about 76(4)% following annealing at 350 °C. Further annealing at higher temperatures reduced this fraction, possibly via dissociation of the complex. Calculations suggest dissociation energy of 1.94(5) eV for the complex. DFT calculations performed in this work are in reasonable good agreement with the experimental values for the electric-field gradient of the defect complex in Ge and Si for comparison. The calculations predict a split-vacancy configuration with the Pd on a bond-centred interstitial site having a nearest-neighbour semi-vacancy on both sides (V-PdBI-V) in Ge and Si.  相似文献   
4.
5.
Solubility of several anthraquinone derivatives in supercritical carbon dioxide was readily available in the literature, but correcting ability of the existing models was poor. Therefore, in this work, two new models have been developed for better correlation based on solid–liquid phase equilibria. The new model has five adjustable parameters correlating the solubility isotherms as a function of temperature. The accuracy of the proposed models was evaluated by correlating 25 binary systems. The proposed models observed provide the best overall correlations. The overall deviation between the experimental and the correlated results was less than 11.46% in averaged absolute relative deviation (AARD). Moreover, exiting solubility models were also evaluated for all the compounds for the comparison purpose.  相似文献   
6.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   
7.
The tJ model is analysed in the limit of strong anisotropy, where the transverse components of electron spin are neglected. We propose a slave-particle-type approach that is valid, in contradiction to many of the standard approaches, in the low-doping regime and becomes exact for a half-filled system. We describe an effective method that allows to numerically study the system with the no-double-occupancy constraint rigorously taken into account at each lattice site. Then, we use this approach to demonstrate the destruction of the antiferromagnetic order by increasing the doping and formation of Nagaoka polarons in the strong interaction regime.  相似文献   
8.
We report on an elastic neutron scattering study of the charge correlations in La2–xSrx CoO4 with x = 1/3, 0.4 and 0.5. We found that the checkerboard charge ordering correlations present in the x = 0.5 sample persist in the x = 0.4 and 1/3 materials. These checkerboard charge ordering correlations are robust and explain the occurrence of nano‐phase separation in layered cobaltates for Sr‐concentrations away from half‐doping. The half‐integer reflections then arise from the nanometer‐sized hole‐rich regions (blue areas in title figure) instead of the undoped ones (red areas in title figure). The appearance of nano‐phase separation is an important ingredient for understanding the formation of hour‐glass shaped magnetic excitation spectra in La2–xSrx CoO4.

Nano‐phase separation in La2–xSrx CoO4 (schematically). Red areas: undoped La2CoO4 islands, blue areas: checkerboard charge ordered regions; black, green and blue balls represent nonmagnetic Co3+ ions, magnetic Co2+ ions and oxygen ions, respectively; green arrows indicate Co2+ spins [1, 2].  相似文献   

9.
We present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization.  相似文献   
10.
In this review, we describe general ideas of the LDA+DMFT method which merges dynamical mean-field theory (DMFT) and density functional theory (in particular the local density approximation (LDA)). Nowadays, the LDA+DMFT computational scheme is the most powerful numerical tool for studying physical properties of real materials and chemical compounds. It incorporates the advantage of DMFT to treat the full range of local dynamical Coulomb correlations and the ability of band methods to describe material-specific band dispersion caused by the lattice periodicity. We briefly discuss underlying physical ideas of LDA+DMFT and its mathematical implementation. Then different algorithms applied to solution of the DMFT impurity problem are briefly described. We then give examples of successful applications of the LDA+DMFT method to study spectral and magnetic properties of recently synthesized compounds like pnictide superconductors as well as classic charge-transfer systems NiO and MnO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号