首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6104篇
  免费   614篇
  国内免费   486篇
化学   3627篇
晶体学   36篇
力学   285篇
综合类   5篇
数学   397篇
物理学   2854篇
  2024年   3篇
  2023年   118篇
  2022年   121篇
  2021年   105篇
  2020年   138篇
  2019年   132篇
  2018年   94篇
  2017年   177篇
  2016年   275篇
  2015年   239篇
  2014年   332篇
  2013年   579篇
  2012年   362篇
  2011年   513篇
  2010年   375篇
  2009年   449篇
  2008年   371篇
  2007年   455篇
  2006年   414篇
  2005年   317篇
  2004年   259篇
  2003年   220篇
  2002年   126篇
  2001年   109篇
  2000年   110篇
  1999年   77篇
  1998年   85篇
  1997年   90篇
  1996年   76篇
  1995年   62篇
  1994年   65篇
  1993年   29篇
  1992年   33篇
  1991年   29篇
  1990年   31篇
  1989年   48篇
  1988年   49篇
  1987年   34篇
  1986年   14篇
  1985年   11篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   8篇
  1980年   12篇
  1979年   10篇
  1978年   2篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
排序方式: 共有7204条查询结果,搜索用时 15 毫秒
1.
Supercapacitors (SCs) with high energy density and power density are a research hotspot. Herein, we report a flexible porous carbon membrane supercapacitor prepared by electrospinning polyacrylonitrile (PAN) with γ-cyclodextrin-MOF (γ-CD-MOF) and then carbonizing at 900 °C. BET results showed that the supercapacitor retained the skeleton of γ-CD, γ-CD-MOF and the pores formed by the spun-fibers, which were 0.73, 1.09 and 23–186 nm, respectively, showing a high specific surface area of 134.7 m2/g. The hierarchically porous structures ensure rapid charge transfer and ion diffusion, resulting in the PAN/γ-CD-MOF carbon electrode with a high capacity of 283.3 F/g. Moreover, the supercapacitor had a high energy density up to 17.5 Wh/kg and power density up to 6 kW/kg. Significantly, it showed excellent cycle stability with a capacitance retention of 97.5% after 6000 cycles. This work provides a supramolecular strategy to construct a flexible porous carbon membrane, which has potential for supercapacitor applications.  相似文献   
2.
We used a diamond anvil cell(DAC) to control the deformation of synthesized copper nanorods and silver nanoparticles. And we measured the surface plasmon resonance of copper nanorods and silver nanoparticles, which exhibit redshifts or blueshifts. The surface plasmon resonance shows an abnormal blue shift for both copper nanorods and silver nanoparticles. The solvents of copper nanorods and silver nanoparticles are n-hexane and water, where the pressure loads include quasi-hydrostatic and non-hydrostatic.  相似文献   
3.
Phosphors with outstanding luminescence thermal stability are desirable for high-power phosphor-converted light-emitting diode (pc-LED) lightings. High structural rigidity and large bandgap of phosphor hosts are helpful to suppress nonradiative relaxation of optical centers and realize excellent thermal stability. Unfortunately, few host materials simultaneously possess aforementioned structural features. Herein, we confirm that Sr3(PO4)2 (SPO) phosphate possesses high structural rigidity (Debye temperature, ΘD = 559 K) and large bandgap (Eg = 8.313 eV) by density functional theory calculations. As expected, Eu2+-doped SPO purple-blue phosphors show extraordinary thermal stability. At 150/300 °C, SPO:5%Eu2+ presents emission loss of only 4%/8% and a predicated ultrahigh thermal quenching temperature of 973 °C. The most strikingly discoveries here are that thermal-induced emission compensation appears within two distinct Eu2+ sites of SPO host. The outstanding thermal stability, on one hand, is attributed to rigid structure and large bandgap of host that inhibits nonradiative relaxation of Eu2+ and on the other hand, the emission self-compensation of Eu2+. Benefiting from synergistic effect of emission compensation and nonradiative transition restriction of Eu2+, as-prepared SPO:5%Eu2+ purple-blue phosphor not only presents superior thermal stability but also high internal quantum efficiency of 95.1% and excellent hydrolysis resistant. Some advanced applications are explored including white LED lighting and wide-color-gamut display. Our work provides in-deep insights into structure-property relationships of thermally stable phosphors.  相似文献   
4.
Cavitation erosion at the high hydrostatic pressure causes the equipment to operate abnormally for the huge economic losses. Few methods can quantitatively evaluate the cavitation erosion intensity. In order to solve this problem, the cavitation erosion on a copper plate was carried out in a spherical cavity focused transducer system at the hydrostatic pressure of 3, 6, and 10 MPa. Meanwhile, the corresponding cavitation threshold, the initial bubble radius, and the microjet velocity in the ultrasonic field are theoretically analyzed to determine the dimension and velocity of microjet based on the following hypotheses: (1) the influence of the coalescence on the bubble collapse is ignored; (2) the dimension of the microjet is equal to the largest bubble size without the influence of gravity and buoyancy. Using the Westervelt equation for the nonlinear wave propagation and the Johnson-Cook material constitutive model for the high strain rate, a microjet impact model of the multi-bubble cavitation was constructed. In addition, through the analogy with the indentation test, an inversion model was proposed to calculate the microjet velocity and the cavitation erosion intensity. The microjet geometric model was constructed from the dimension and velocity of the microjet. The continuous microjet impact was proposed according to the equivalent impact momentum and solved by the finite element method. The relative errors of the pit depth are 4.02%, 3.34%, and 1.84% at the hydrostatic pressure of 3, 6, and 10 MPa, respectively, and the relative error in the evolution of pit morphology is 7.33% at 10 MPa, which verified the reliability of the proposed models. Experimental and simulation results show that the higher the hydrostatic pressure, the greater the pit depth, pit diameter, the pit-to-microjet diameter ratio, and the cavitation erosion intensity, but the smaller the pit diameter-to-depth ratio. The cavitation erosion intensity becomes significant with the ongoing ultrasonic exposure. In addition, a comparison of the cavitation pit morphology in the microjet pulsed and continuous impact modes shows that the continuous impact mode is effective without the elastic deformation caused by the residual stress. Using the cavitation pit morphology at the different hydrostatic pressures, the microjet velocity can be estimated successfully and accurately in a certain range, whose corresponding errors at the lower and upper limit are 5.98% and 0.11% at 3 MPa, 6.62% and 9.14% at 6 MPa, 6.54% and 5.42% at 10 MPa, respectively. Our proposed models are valid only when the cavitation pit diameter-to-depth ratio is close to 1. Altogether, the cavitation erosion induced by multi-bubble collapses in the focal region of a focused transducer could be evaluated both experimentally and numerically. Using the cavitation pit morphology and the inversion model, the microjet velocity in a certain range could be estimated successfully with satisfactory accuracy.  相似文献   
5.
Large amounts of flowback and produced water (FPW) have been generated from hydraulic fracturing process for the production of unconventional gas such as shale gas. Complex organic pollutants are abundantly present in FPW with revealed toxicity to aquatic organisms and these contaminants may transfer into surrounding aquatic environment. Characterization and determination of complicated organic pollutants in FPW remains a challenge due to its complex composition and high salinity matrix. This review article covers the progress of recent 5 years regarding the sample preparation and instrumental analysis methods and thus summarizes the advantages and disadvantages of these methods for critical analysis of organic contaminants in FPW samples. Furthermore, the natural distribution of detected organic compounds and their transformation were reviewed and discussed to enhance the understanding of spatial and temporal behaviors of these organic pollutants in natural environment, paving the way for future development of pollution control policies and strategies. Enlightened by the studies of FPW contamination in the US, the investigations of FPW contamination in China continued to grow due to rapidly growing production of shale gas in China and resulted pollution.  相似文献   
6.
This paper investigates the channel model for multiple-input multiple-output (MIMO) communication systems in high speed railway (HSR) networks. Specially, a three-dimensional (3D) confocal stochastic geometry ellipsoid model is proposed for modeling the MIMO channels. Normalized space–time correlation function(ST CF), Spatial cross correlation function (CCF) and level crossing rate (LCR) of both theoretical and simulation model are have been derived and analyzed. As a 3D GBSM, the proposed confocal ellipsoid model has lower correlation in spatial cross-correlation function (CCF) compared with that of the corresponding two-dimensional (2D) ellipse model. Measurement data of different HSR scenarios verify the applicability of the confocal ellipsoid model.  相似文献   
7.
Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.  相似文献   
8.
5-羟甲基糠醛(HMF)的电催化氧化被认为是合成2,5-呋喃二甲酸(FDCA)最环保、经济和有效的方法之一,它可作为聚呋喃二甲酸乙二醇酯(PEF)的生物基前体。在这项工作中,我们通过低温溶剂热法合成了PtRuAgCoNi高熵合金纳米颗粒,并在不改变颗粒结构和组成的情况下进行了简易的处理以去除表面活性剂。负载在碳载体上的合金纳米催化剂无论是否含有表面活性剂在HMF电催化氧化为FDCA的过程中都表现出比商业Pt/C更好的催化性能。且表面活性剂的去除可以进一步提高其电催化性能,表明高熵合金纳米粒子在电催化和绿色化学中具有广阔的应用前景。  相似文献   
9.
Polymer electrolytes have attracted great interest for next-generation lithium-based batteries on account of safety and high energy density. In this review, we assess recent progress on the design of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in high voltage lithium batteries and identify possible side reactions between PEO-based electrolytes and existing cathodes. We provide an overview of the ways to enhance high voltage resistance of PEO-based electrolytes. Those include components blend, molecular design and interface modification. With these efforts, we want to present new insights into rational design of PEO-based electrolytes to develop solid-state lithium batteries for advanced performance.  相似文献   
10.
设计了一种新型边孔型保偏光子晶体光纤,在包层中对称地引入两个大空气孔,纤芯区域与大空气孔之间仅有一层小空气孔。由平面应变假设将该模型进行二维简化,利用有限元法对该光纤的二维模型进行数值分析,通过计算不同温度和静压力下的双折射频移以研究其温度和静压力传感特性。研究表明,在较大静压力和温度范围内,该保偏光子晶体光纤无需掺杂任何应力材料就可以实现?2.1353 GHz/MPa的静压力灵敏度且具有温度不敏感性,其温度灵敏度仅为+0.1542 MHz/℃。另外,还对该光子晶体光纤的光学特性进行了分析,其满足单模传输条件、具有较小的限制性损耗和较大的有效模场面积。由于具有体积小、与其他光纤兼容度强、静压力灵敏度高、温度不敏感的特性,其在温度变化不定、静压力改变区间较大的环境中静压力精确测量的优势比较明显,较好的光学特性使其在油井、土木的监测应用等方面有着重要参考价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号