首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
化学   4篇
物理学   3篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2008年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
A facile preparation method of nano-CuO catalysts, assembled in the hollow nanotube of halloysite nanotubes(HNTs), was developed. The characterizations of XRD, TEM, SEM, BET, XRF and FT-IR were used to analyze the structure and properties of the nano-CuO/HNT loaded catalyst. The XRD patterns indicated that the CuO nanoparticles on HNTs were monoclinic phase. The TEM-EDX and SEM images confirmed that most of nano-CuO catalysts with the crystal size of ca. 20 nm were assembled into the hollow nanotube of HNTs. The catalytic performance of the nano-CuO/HNT catalysts was evaluated by using selective oxidation of cyclohexene. The reaction temperature and recycling times were investigated. The results reveal that the nano-CuO/HNT catalysts exhibit an excellent catalytic oxidation performance for selective oxidation of cyclohexene to 2-cyclohexene-1-one.  相似文献   
2.
Halloysite nanotubes (HNTs) have been successfully modified using polyethyleneimine (PEI). HNTs and PEI-modified HNTs-filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its nanocomposites in the presence of dual compatibilizer have been prepared by melt mixing technique. The refinement in matrix–droplet morphology, selective localization of PEI-modified HNTs, increase in crystallinity of PP phase, formation of β-form of PP crystals and improved dispersion of PEI-modified HNTs in PP phase has resulted in a remarkable improvement in tensile modulus, impact strength and thermal stability of PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer. The increase in tensile modulus, tensile strength and impact strength for PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer are 28.8, 26.6 and 38.5%, respectively.  相似文献   
3.
程志林  曹宝冲  刘赞 《无机化学学报》2018,34(10):1808-1816
利用埃洛石纳米管(HNTs)特有的中空纳米结构,以及丰富的界面化学性质,以聚乙烯醇(PVA)为碳源,采用浸渍填充纳米孔方法实现了一步制备一维碳纳米管(CNTs)/碳纳米棒(CNRs)混合纳米碳材料。考察模板剂(HNTs)和碳源(PVA)之间的比例关系对混合纳米碳材料的结构影响,利用XRD、FTIR、Raman、N2吸附-脱附测试、TEM、SEM以及电阻率和分散性等表征手段分析混合纳米碳材料的结构变化。结果发现,PVA填充含量的增加将导致产物中CNRs的质量分数增加;当PVA和HNTs质量之比为1∶1时,所制备的CNTs/CNRs的孔体积达到最大值2.142 cm~3·g-1,比表面积达到583 m~2·g-1,并且表现出较好的电导率和分散性,表明低的PVA填充比例制备的混合碳材料中CNTs含量较高。  相似文献   
4.
Halloysite nanotubes (HNTs) filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its composites in presence and absence of dual compatibilizer (polypropylene grafted maleic anhydride (PP-g-MA), and styrene-ethylene, butylene-styrene triblock copolymer grafted with maleic anhydrite (SEBS-g-MA)) have been prepared using twin screw extruder followed by injection moulding. Significant refinements in dispersed ABS droplets diameter and interparticle distance between dispersed ABS droplets were observed in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. This has resulted in significant enhancement in tensile and impact properties of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. Refinement in morphology of dispersed ABS phase results in decrease in crystallinity of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. In addition, HNTs act as heterogeneous nucleating agent for the growth of PP crystals, and hence crystallization rate of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA increases. Thermal stability also increases in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA.  相似文献   
5.
Halloysite nanotubes (HNTs) grafted hyperbranched polymers were prepared by the self-condensing vinyl polymerization (SCVP) of 2-((bromoacetyl)oxy)ethyl acrylate (BAEA) and the self-condensing vinyl copolymerization of n-butyl acrylate (BA) and BAEA with BAEA as inimer (AB*) respectively, from the surfaces of the 2-bromoisobutyric acid modified halloysite nanotubes (HNTs-Br) via atom transfer radical polymerization (ATRP) technique. The halloysite nanotubes grafted hyperbranched polymer (HNTs-HP) and the halloysite nanotubes grafted hyperbranched copolymer (HNTs-HCP) were characterized by elemental analysis (EA), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscope (TEM). The grafted hyperbranched polymers were characterized with Nuclear magnetic resonance (NMR) and the molecular ratio between the inimer AB* and BA in the grafted hyperbranched copolymers was found to be 3:2, calculated from the TGA and EA results.  相似文献   
6.
In the present study, the halloysite nanotubes (HNTs) were loaded with a multicomponent inhibitor (LHNT) comprising mainly benzotriazole (BTA), sodium benzoate (SB), and lauric acid (LA) via the vacuum cycling method. The successful loading of the BTA + LA + SB inhibitor has been confirmed by the TGA, FTIR, and BET analyses. The TGA analysis has determined ~ 14% loading of the BTA + LA + SB into the HNTs. Moreover, UV–vis analysis shows that the time and pH-dependent have incremental release of the multicomponent inhibitor in various studied media. The composite coatings (LHNT COAT) were developed by reinforcing the 3 wt% of LHNTs into the epoxy matrix. The corrosion protection of the developed LHNT COAT was enhanced by 99.6% and 98.88% compared to the blank epoxy and unloaded HNT coatings, respectively. This improvement in the corrosion behavior can be attributed to the active release of the multicomponent inhibitor, as was also demonstrated by the electrochemical impedance spectroscopic (EIS) test. It is further predicted that the improved corrosion inhibition efficiency of LHNT COAT may be due to the formation of some components produced from the reaction of the inhibitor components or from the inhibitor reaction with the corrosive medium. The high corrosion resistance of LHNT COAT makes it attuned to several industrial applications.  相似文献   
7.
In this paper, the PVA/HNTs composite nanofibers with well‐enhanced mechanical properties were successfully prepared by electrospinning technique. The structure and properties of the composite nanofibers were characterized by TEM, XRD, FT‐IR, and DSC. The results indicated that the highly oriented and dispersed HNTs wrapped in polymer matrix were achieved by inducing function during electrospinning processing. The mechanical properties of the PVA/HNTs composite nanofibers depended on HNTs content were investigated, which showed 72.4% increase in tensile strength at optimal filling content. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号