首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   18篇
  国内免费   139篇
化学   572篇
力学   3篇
物理学   114篇
  2023年   19篇
  2022年   11篇
  2021年   10篇
  2020年   16篇
  2019年   17篇
  2018年   16篇
  2017年   14篇
  2016年   17篇
  2015年   29篇
  2014年   22篇
  2013年   27篇
  2012年   39篇
  2011年   46篇
  2010年   30篇
  2009年   40篇
  2008年   56篇
  2007年   49篇
  2006年   28篇
  2005年   29篇
  2004年   19篇
  2003年   25篇
  2002年   23篇
  2001年   17篇
  2000年   16篇
  1999年   5篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有689条查询结果,搜索用时 364 毫秒
1.
A convenient assembly recently proposed for screen printed gold electrodes (SPEs) suitable for measurements in gaseous samples is here tested for the analysis of the ethanol content in alcoholic drinks. This assembly involves the use of a circular crown of filter paper, soaked in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hydrogen sulfate, which is simply placed upon a disposable screen printed cell, so as to contact the outer edge of the gold disc working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL and the SPE electrode is assured by a gasket and all components are installed in a polylactic acid holder. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of a RTIL characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was assayed for the flow injection analysis of the ethanol concentration in some real samples of wine and beer and the results obtained are compared with the alcoholic degree reported in the relevant bottle-labels, thus highlighting a substantially satisfactory agreement. Repeatable sharp peaks (RSD=6–8 %) were detected for ethanol over a wide linear range (1–20 % v/v in water) and a detection and quantitation limit of 0.55 % v/v and 1.60 % v/v were inferred for a signal-to-noise ratio of 3 and 10, respectively.  相似文献   
2.
Photocatalytic conversion of CO2 is of great interest but it often suffers sluggish oxidation half reaction and undesired by-products. Here, we report for the first the simultaneous co-photocatalytic CO2 reduction and ethanol oxidation towards one identical value-added CH3CHO product on a rubidium and potassium co-modified carbon nitride (CN-KRb). The CN-KRb offers a record photocatalytic activity of 1212.3 μmol h−1g−1 with a high selectivity of 93.3 % for CH3CHO production, outperforming all the state-of-art CO2 photocatalysts. It is disclosed that the introduced Rb boosts the *OHCCHO fromation and facilitates the CH3CHO desorption, while K promotes ethanol adsorption and activation. Moreover, the H+ stemming from ethanol oxidation is confirmed to participate in the CO2 reduction process, endowing near ideal overall atomic economy. This work provides a new strategy for effective use of the photoexcited electron and hole for high selective and sustainable conversion of CO2 paired with oxidation reaction into identical product.  相似文献   
3.
The ethanol/water separation challenge highlights the adsorption capacity/selectivity trade-off problem. We show that the target guest can serve as a gating component of the host to block the undesired guest, giving molecular sieving effect for the adsorbent possessing large pores. Two hydrophilic/water-stable metal azolate frameworks were designed to compare the effects of gating and pore-opening flexibility. Large amounts (up to 28.7 mmol g−1) of ethanol with fuel-grade (99.5 %+) and even higher purities (99.9999 %+) can be produced in a single adsorption process from not only 95 : 5 but also 10 : 90 ethanol/water mixtures. More interestingly, the pore-opening adsorbent possessing large pore apertures showed not only high water adsorption capacity but also exceptionally high water/ethanol selectivity characteristic of molecular sieving. Computational simulations demonstrated the critical role of guest-anchoring aperture for the guest-dominated gating process.  相似文献   
4.
Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2H5OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat−1 h−1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2H5OH conversion pathway.  相似文献   
5.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   
6.
Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon-carbon (C−C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu-MOF) nanorod array with encapsulated Cu2O (Cu2O@MOF/CF), which can induce an intensive internal electric field to increase the C−C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2O@MOF/CF as the self-supporting electrode, the ethanol faradaic efficiency (FEethanol) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working-potential of −0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2-saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C−C coupling and reduce the formation energy of H2CCHO*-to-*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals.  相似文献   
7.
物质的蒸气压是化学、化工、冶金、医药等领域的重要基础数据。测量饱和蒸气压是大学物理化学实验教学中的一个基础实验,测量方法主要有静态法和动态法,但两种方法的比较尚未见报道。本文通过比较,得出了两种方法的优缺点以及注意事项。  相似文献   
8.
采用等温法测定了30℃时Mg Cl2-Mg SO4-CH3CH2OH-H2O四元体系及边界三元体系Mg Cl2-CH3CH2OH-H2O和Mg SO4-CH3CH2OH-H2O的相平衡数据,绘制了相图并划分了相应的结晶区。实验结果表明,随着乙醇-水体积比不同,四元体系Mg Cl2-Mg SO4-CH3CH2OH-H2O出现了不同的结晶区,随着乙醇含量的增加,Mg Cl2和Mg SO4的溶解度越来越小,不饱和区越来越小,体系中平衡固相的结晶水含量越来越低,说明乙醇具有一定的盐析作用和脱水作用。当乙醇-水体积比为5∶5时,是获得镁盐的最佳比例。这为芒硝和白钠镁矾共生矿中镁盐的分离和提纯提供基础的理论数据。  相似文献   
9.
An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH)2-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH)2 structure by insertion of Co2+ and Cd2+ ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v)−1, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate analysis, thus contributing for deployment of point-of-use technologies. All of the results were accurate with respect to those obtained by FTIR method at 95% confidence level.  相似文献   
10.
This work deals with the prediction and experimental measurements of the (solid + liquid) equilibrium (SLE) in acid medium for industrial purposes. Specific systems including KCl–ethanol–water–HCl and K2SO4–water–H2SO4 were analyzed. At first, a critical discussion of SLE calculations was given, based on the well-known UNIQUAC extended and LIQUAC models. Two new proposals were derived, considering the explicit necessity of a new reference state for SLE calculations for the studied (solvents + acid) mixtures. The solubility of KCl in water–ethanol–HCl mixed solvents was measured in the temperature range of 300.15 to 315.15 K using an analytical gravimetric method. These results combined with some other experimental data reported in the open literature let us to propose a set of parameters for the new models. They included the interaction parameters between ethanol and the H+ ion. The prediction capability of the new models, for calculations in acid medium, was illustrated. Experimentally, it was observed that the (K2SO4 + water + H2SO4) system presented the unusual behavior of increasing K2SO4 solubility with an increase in the sulfuric acid concentration. This was accurately predicted by the newly proposed models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号