首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2853篇
  免费   119篇
  国内免费   351篇
化学   1133篇
晶体学   14篇
力学   328篇
综合类   6篇
数学   439篇
物理学   1403篇
  2024年   3篇
  2023年   145篇
  2022年   100篇
  2021年   84篇
  2020年   120篇
  2019年   82篇
  2018年   91篇
  2017年   111篇
  2016年   89篇
  2015年   98篇
  2014年   143篇
  2013年   179篇
  2012年   116篇
  2011年   221篇
  2010年   166篇
  2009年   186篇
  2008年   211篇
  2007年   175篇
  2006年   152篇
  2005年   106篇
  2004年   103篇
  2003年   96篇
  2002年   80篇
  2001年   69篇
  2000年   45篇
  1999年   37篇
  1998年   41篇
  1997年   35篇
  1996年   20篇
  1995年   27篇
  1994年   22篇
  1993年   16篇
  1992年   20篇
  1991年   22篇
  1990年   12篇
  1989年   11篇
  1988年   10篇
  1987年   12篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1973年   6篇
  1970年   1篇
排序方式: 共有3323条查询结果,搜索用时 31 毫秒
1.
In this work, we present and analyze a mathematical model for tumor growth incorporating ECM erosion, interstitial flow, and the effect of vascular flow and nutrient transport. The model is of phase-field or diffused-interface type in which multiple phases of cell species and other constituents are separated by smooth evolving interfaces. The model involves a mesoscale version of Darcy’s law to capture the flow mechanism in the tissue matrix. Modeling flow and transport processes in the vasculature supplying the healthy and cancerous tissue, one-dimensional (1D) equations are considered. Since the models governing the transport and flow processes are defined together with cell species models on a three-dimensional (3D) domain, we obtain a 3D–1D coupled model.  相似文献   
2.
The carbon composite materials have been a research hotspot in the fields of catalysis, energy conversion and so on, because of their features of large structure and morphology variety, good chemical and electrochemical stability, and high electronic conductivity, large specific surface area and rich active sites. This paper summarizes some research progress of carbon composite materials, including assembly methodologies, their structure regulation, properties, and related applications. Moreover, the current challenges and the prospects of these materials are also discussed.  相似文献   
3.
4.
5.
This review article covers the growth and characterization of two-dimensional (2D) crystals of transition metal chalcogenides, h-BN, graphene, etc. The chemical vapor transport method for bulk single crystal growth is discussed in detail. Top-down methods like mechanical and liquid exfoliation and bottom-up methods like chemical vapor deposition and molecular beam epitaxy for mono/few-layer growth are described. The optimal characterization techniques such as optical, atomic force, scanning electron, and Raman spectroscopy for identification of mono/few-layer(s) of the 2D crystals are discussed. In addition, a survey was done for the application of 2D crystals for both creation and deterministic transfer of single-photon sources and photovoltaic systems. Finally, the application of plasmonic nanoantenna was proposed for enhanced solar-to-electrical energy conversion and faster/brighter quantum communication devices.  相似文献   
6.
Our main goal in the present work is to address an integro-differential model under localized viscoelastic and frictional effects arising in the Boltzmann theory of viscoelasticity. More precisely, we consider a general version in the history context of the pioneer localized viscoelastic problem approached by Cavalcanti and Oquendo (2003) in the null history scenario, and more recently by Cavalcanti et al. (2018) in the history framework. By means of a new observability inequality, we prove a general stability result to the model under a weaker assumption on the localized frictional damping and a slower condition on the decreasing memory kernel (of polynomial type) than the previously mentioned works. To achieve such stability results, we still work in a general setting by removing the assumption on complementary damping mechanisms and show, in some reasonable situations concerning the density coefficient, that the localized viscoelastic effect is enough to ensure the general stability (of polynomial type) to the problem.  相似文献   
7.
《Current Applied Physics》2020,20(4):582-588
Energy storage system powered by renewable energies is a viable option to meet energy requirement without addition of carbon footprints to the environment. This study involves development of theoretical and computational models for a solar photovoltaic (PV) system coupled with a lead acid battery. The study commenced with selection of most appropriate lead acid battery and PV system for installation in a representative location in Riyadh, Kingdom of Saudi Arabia. Various technical and economic parameters were assessed and calculated by computational approach. The optimized lead acid battery was integrated with low concentration solar PV panels (CPV) followed by a feasibility study. Theoretical model was developed for the integrated system to calculate various parameters of the CPV and lead acid battery. Technical and economic assessment of this coupled unit was calculated using a theoretical approach. The developed model was then subjected to computational approach for verification and validation analysis of the integrated system. The detailed assessment of batteries and integrated system show the applicability of this system in Riyadh region. The research will be extended to develop energy storage systems for remote areas using lead acid batteries.  相似文献   
8.
Quinones are electroactive species that have shown great promise for redox flow batteries due to the ability to tune their properties and to act as both negative and positive electrolytes. The following review outlines highlights of work in the last couple of years working to provide materials with higher stability, solubility, and performance. Developments toward stable negolytes have provided opportunities for potential commercial opportunities when paired with alternate chemistries. However, the stability of quinones in high potential electrolytes is still not sufficient and the number of potential quinones limited.  相似文献   
9.
Microporous carbon shows the highest supercapacitor performance among other carbon nanomaterials, and thus, is considered as the most promising candidate for the fabrication of high-performance supercapacitors. However, it has puzzled the researchers as micropores do not have enough space for the formation of the so-called double layer. Several models have been proposed to explain the mechanism of energy storage by microporous supercapacitors. The most common one is that the micropores are initially filled by both anions and cations, and charging/discharging is via ion-exchange through these single row-filled micropores. Although this theory has been supported by several computational calculations, it is discussed here that this model is in disagreement with the experimental facts commonly accepted in the literature.  相似文献   
10.
All-organic composites are widely used in energy storage application due to the high breakdown strength performance, but the improvement of energy storage was limited by the relatively low dielectric constant. Therefore, to satisfy the high demands of dielectric materials, energy storage properties of polymer composites should be further enhanced. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA), which are known as high dielectric ferroelectric material and linearly high energy storage efficiency material respectively, are composited through double layer (DL) casting method for the first time. The properties of DL structured composite film is contrasted with solution blending structure especially in energy storage efficiency, and the results demonstrate that DL structure design can make great use of advantages of two materials and also can avoid the influence of phase separation between P(VDF-CTFE) and PUA efficiently. Moreover, high breakdown strength (6180 kV/cm) and high energy storage efficiency (77%) of DL composites can be realized simultaneously by incorporating PUA as an insulating layer, and the mechanism is discussed in detail. This work provides an effective route to improve the energy storage properties of polymer dielectric materials and shows great application potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号