首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33948篇
  免费   4281篇
  国内免费   15046篇
化学   30325篇
晶体学   450篇
力学   2530篇
综合类   1450篇
数学   6249篇
物理学   12271篇
  2024年   39篇
  2023年   639篇
  2022年   820篇
  2021年   722篇
  2020年   649篇
  2019年   711篇
  2018年   494篇
  2017年   715篇
  2016年   750篇
  2015年   770篇
  2014年   1648篇
  2013年   1366篇
  2012年   1379篇
  2011年   1603篇
  2010年   1638篇
  2009年   1770篇
  2008年   1845篇
  2007年   1669篇
  2006年   2047篇
  2005年   1958篇
  2004年   1964篇
  2003年   2922篇
  2002年   3522篇
  2001年   3173篇
  2000年   2221篇
  1999年   1729篇
  1998年   1978篇
  1997年   1845篇
  1996年   2061篇
  1995年   1924篇
  1994年   1709篇
  1993年   863篇
  1992年   1041篇
  1991年   1041篇
  1990年   887篇
  1989年   747篇
  1988年   135篇
  1987年   93篇
  1986年   59篇
  1985年   63篇
  1984年   32篇
  1983年   17篇
  1982年   9篇
  1981年   2篇
  1959年   5篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
1问题提出重视定理教学“过程”是核心素养培养的必然要求,也获得了中小学数学教师的广泛赞同,但有些“过程”却事与愿违.以初中“垂径定理”的教学为例,很多教师并没有关注到这是“圆”章节的起始定理,直接让学生沿直径翻折圆形纸片,得出圆的轴对称性,并用动态课件验证(环节1);继而形式化分析证明圆的轴对称性,由此得到“垂径定理”(环节2).  相似文献   
2.
人体内大部分生物学过程都离不开细胞黏附.细胞黏附行为主要由锚定于细胞膜上的特异性分子(又称受体和配体)的结合动力学关系来决定.已有研究表明,特异性分子的结合关系受外力及细胞膜波动等多种因素影响.然而,特异性分子刚度对细胞膜锚定受体 配体结合关系的影响机制仍不清楚.近期关于新冠病毒强传染力的研究表明,特异性黏附分子刚度对病毒与细胞结合具有重要影响.该文通过建立生物膜黏附的粗粒度模型,借助分子模拟和理论分析来研究分子刚度在黏附中的作用.结果表明,始终存在一个最佳膜间距及最佳分子刚度值,使得黏附分子亲和力和结合动力学参数达到最大值.这项研究不仅能加深人们对细胞黏附的认知,还有助于指导药物设计、疫苗研发等.  相似文献   
3.
结构色在自然界中扮演了重要的角色,在昆虫外骨骼、鸟类羽毛以及植物果实中广泛分布.纤维素纳米晶体(CNCs)的水悬浮液达到一定浓度时会自组装形成左旋的手性向列液晶结构,这种手性向列结构在水分挥发后仍能保持并形成光子晶体虹彩薄膜,具有极强的手性和光子晶体的双重性质.膜内的周期性层状结构与光线产生干涉、衍射作用,表现出复杂的虹彩色.CNCs与其他材料结合所制备的CNCs手性复合材料具有良好的力学性能,在传感器、防伪以及装饰等领域具有广阔前景.本文讨论了CNCs手性复合材料的结构色调控以及在刺激响应、图案显示和圆偏振光学等方面的研究进展.  相似文献   
4.
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.  相似文献   
5.
极端工况双矩形腔静压推力轴承动态特性   总被引:1,自引:0,他引:1  
静压推力轴承动态特性受润滑油黏度、油膜厚度和油腔面积等因素影响, 极端工况运行过程中经常承受阶跃载荷或正弦载荷作用, 突加载荷将导致静压推力轴承动态特性改变, 表现为轴承的抗冲击能力和恢复平衡所需时间的变化. 为获得高速重载微间隙极端工况条件下双矩形腔静压推力轴承动态特性, 分别在不同油膜厚度、不同润滑油黏度以及不同油腔尺寸条件下对双矩形腔静压推力轴承的动态性能进行理论分析, 探讨了阶跃载荷作用下润滑油黏度、油膜厚度和油腔面积对轴承动态性能的影响, 揭示了油膜动态变化规律, 探究了正弦载荷作用下双矩形腔静压推力轴承的稳定性. 结果表明: 润滑油黏度、油膜厚度和油腔尺寸变化对其动态性能有很大的影响. 润滑油黏度越大、油膜厚度越小、油腔面积越大突加载荷作用下润滑油膜抵抗冲击的能力越强, 旋转工作台受到突加外力作用下恢复至平衡状态所用时间越短. 双矩形腔静压推力轴承油膜具有较大的阻尼系数, 轴承具有极强的抵抗正弦加载作用的能力   相似文献   
6.
本文中针对单个硬质角形颗粒冲击金属材料表面的过程,设计了弹射试验装置,研究菱形颗粒冲击行为及冲蚀机理.采用高速摄像机,捕捉不同冲击速度v_i、冲击角度α_i和方位角度θ_i下颗粒的运动轨迹.建立了基于拉格朗日法的FEM-SPH耦合数值计算模型,借助于模型进一步分析了角形颗粒的运动学行为和变形凹坑形态.结果表明:冲击角α和方位角θ是决定颗粒旋转的关键因素,在某一固定冲击角αi下存在一个临界方位角θcr_i,当θiθ_(cri)时颗粒冲击后发生前旋旋转,当θ_iθ_(cri)时颗粒冲击后发生后旋旋转;冲击诱导的颗粒旋转对冲蚀机理的影响较大,颗粒前旋旋转对金属材料产生"耕犁"作用,后旋旋转对金属材料产生"撬起剔除"作用.颗粒的动能损失受到冲击角α_i和方位角θ_i的影响较大,临界方位角θ_(cri)下颗粒的动能损失最大,凹坑变形最严重.  相似文献   
7.
在磁约束核聚变堆的面对等离子部件设计中,液态金属锂膜流因具有带走杂质、保护面对等离子固壁等优点而被认为是优选方案之一. 然而,如何克服聚变堆中强磁场环境下产生的磁流体力学效应并形成大面积均匀铺展锂膜流动是目前亟需解决的问题.本文通过搭建室温液 态镓铟锡回路和高温液态锂回路,开展了两种不同特性的液态金属膜流实验, 并采用传统可视化方法获得了展向磁场存在时镓铟锡和锂在导电底板形成的液膜流动表面特征.实验结果 表明: 无磁场时,两种液态金属膜流流动表面波动特性与常规流体膜流均一致, 即随着流动雷诺数的增加表面波动变得更为混乱; 而展向磁场存在时,镓铟锡膜流表面波动变得更为规则, 且沿着磁场方向平行排列,表现为拟二维波动的特征; 而锂膜流却产生了明显的磁流体 力学阻力效应,表现为在流动方向局部产生锂滞留现象, 且滞留点随雷诺数增大向下游移动. 最后通过膜流受力分析,进一步阐述了锂膜流受到比镓铟锡膜流更为严重磁流体力学效应影响的原因.   相似文献   
8.
引起边缘应力集中的边缘效应是影响边界润滑条件下织构材料摩擦学性能的重要因素之一.本文中采用激光加工、电化学和机械抛光的方法在不锈钢表面制备了边缘未修形和修形凹坑织构,在此基础上采用溅射/射频化学气相沉积技术沉积了Si-DLC膜,研究了边缘修形对织构化薄膜在油中摩擦学性能的影响.基于有限元方法分析了加载条件下凹坑织构接触界面的应力分布,考察了修形对边缘效应的影响.结果表明:边缘修形可大幅降低凹坑织构化薄膜与不锈钢对偶球配副间的摩擦以及对偶的磨损.织构的摩擦学性能与边缘效应呈正相关关系,边缘修形可使凹坑边缘的最大接触应力降低30%左右,有利于缓和凹坑边缘的刮擦作用从而降低织构材料的摩擦磨损.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号