首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   10篇
  国内免费   24篇
化学   107篇
晶体学   4篇
力学   3篇
综合类   3篇
数学   1篇
物理学   35篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   10篇
  2014年   9篇
  2013年   10篇
  2012年   7篇
  2011年   15篇
  2010年   6篇
  2009年   15篇
  2008年   9篇
  2007年   12篇
  2006年   15篇
  2005年   7篇
  2004年   8篇
  2001年   1篇
  2000年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
It has been suggested that multiwalled carbon nanotubes (MWCNTs) interacting with pharmaceutics may be introduced into the body as nanocarriers. To deliver the anticancer drugs, covalent or noncovalent functionalization of MWCNTs is required. In this study, the influence of oxidation on MWCNTs in the interaction with chemotherapeutic drug, doxorubicin, was characterized. The binding of doxorubicin with MWCNTs decreased rapidly with the increasing oxidation period with sulfuric acid. However, with nitric acid, the interaction increased initially and slowly decreased with time. The best results were obtained for sulfuric and nitric acid following 1 and 3?h of oxidation, respectively. The results show that sulfuric acid provided more favorable interaction for MWCNTs with doxorubicin than nitric acid.  相似文献   
2.
In this study, strain rate effects on the compressive mechanical properties of randomly structured carbon nanotube (CNT) networks were examined. For this purpose, three-dimensional atomistic models of CNT networks with covalently-bonded junctions were generated. After that, molecular dynamics (MD) simulations of compressive loading were performed at five different strain rates to investigate the basic deformation characteristic mechanisms of CNT networks and determine the effect of strain rate on stress–strain curves. The simulation results showed that the strain rate of compressive loading increases, so that a higher resistance of specimens to deformation is observed. Furthermore, the local deformation characteristics of CNT segments, which are mainly driven by bending and buckling modes, and their prevalence are strongly affected by the deformation rate. It was also observed that CNT networks have superior features to metal foams such as metal matrix syntactic foams (MMSFs) and porous sintered fiber metals (PSFMs) in terms of energy absorbing capabilities.  相似文献   
3.
This article explores Darcy–Forchheimer 3D flow of water-based carbon nanomaterial (CNTs). A bi-directional linear stretchable surface has been used to create the flow. Flow in porous space is represented by Darcy–Forchheimer expression. Heat transfer mechanism is explored through convective heating. Results for single-wall (SWCNTs) and multi-wall (MWCNTs) carbon nanotubes have been presented and compared. The reduction of partial differential system into nonlinear ordinary differential system is made through suitable variables. Optimal homotopic scheme is used for solutions development of governing flow problem. Optimal homotopic solution expressions for velocities and temperature are studied through graphs by considering various estimations of physical variables. Skin friction coefficients and local Nusselt number are analyzed through plots. Our findings show that the skin friction coefficients and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.  相似文献   
4.
采用共浸渍法制备了不同Ce含量的Ce-Cu-Co/CNTs催化剂,考察了其在合成气制低碳醇反应中的催化性能,借助X射线衍射(XRD)、程序升温还原(H2-TPR)、N2吸脱附实验(BET)、透射电镜(TEM)和CO程序升温脱附(CO-TPD)对这些催化剂进行了表征.结果表明,当Ce的质量分数为3%时,低碳醇的时空收率和选择性达到最高,分别为696.4 mg?g-1?h-1和59.7%,其中乙醇占总醇的46.8%,适量Ce的添加能提高Cu物种在催化剂上的分散度和催化剂的还原性能,能显著地增加催化剂吸附CO的能力,促进合成醇活性位的形成,进而明显提高催化剂的活性和总醇的选择性.研究表明,将具有高活性和高碳链增长能力的CuCo基催化剂与碳纳米管的限域效应结合,可实现缩窄产物分布、大幅度提高乙醇选择性的目的.  相似文献   
5.
This paper focuses on the influence of ionic liquid on carbon nanotube based elastomeric composites. Multi-walled carbon nanotubes (MWCNTs) are modified using an ionic liquid at room temperature, 1-butyl 3-methyl imidazolium bis (trifluoromethylsulphonyl) imide (BMI) and modified MWCNTs exhibit physical (cation–π/π–π) interaction with BMI. The polychloroprene rubber (CR) composites are prepared using unmodified and BMI modified MWCNTs. The presence of BMI not only increases the alternating current (AC) electrical conductivity and polarisability of the composites but also improves the state of dispersion of the tubes as observed from dielectric spectroscopy and transmission electron microscopy respectively. In addition to the hydrodynamic reinforcement, the formation of improved filler–filler networks is reflected in the dynamic storage modulus (E′) for modified MWCNTs/CR composites in amplitude sweep measurement upon increasing the proportion of BMI. Hardness and mechanical properties are also studied for the composites as a function of BMI.  相似文献   
6.
Titanium-based metal composites (TMCs) are showing great potential to replace existing traditional materials in aerospace, automotive, and other high temperature engineering applications. This is due to their excellent mechanical, thermal, and physical properties and improved strength to weight ratio. Weight savings in the aerospace industry results in higher efficiency. Carbon nanotubes (CNTs), because of their low density and high Young's modulus, are considered to be an excellent reinforcement for metal matrix composites (MMCs). In the last 20 years extensive research has been carried out to investigate the combination of carbon nanotubes with aluminum, nickel, copper, magnesium, and other metal matrices. The production techniques such as mechanical alloying through powder metallurgy routes and their effects on the mechanical properties of CNT reinforced TMCs are reviewed in this article. The role of the volume fraction of carbon nanotubes and their dispersion into the metal matrix are highlighted. Governing equations to predict the mechanical and tribological properties of CNT reinforced titanium matrix composites are deduced. With the help of this initial prediction of properties, the optimal processing parameters can be optimized. Successful development of CNT reinforced TMCs would result in better wear and mechanical behavior and enhance their ability to withstand high temperature and structural loading environments.  相似文献   
7.
In this article, a newly synthesised ferroelectric liquid crystal (FLC) material, namely LAHS 22, has been characterised. The characterisation of the FLC material has been performed using dielectric relaxation spectroscopy, differential scanning calorimetry and polarisation optical microscopy. We observed an enhancement in the dielectric and electro-optical properties of the FLC material by incorporating gold nanoparticles (GNPs)-decorated multiwalled carbon nanotubes (MWCNTs). The GNPs-decorated MWCNTs cause an increment in dielectric dispersion (up to kHz), absorption, spontaneous polarisation and rotational viscosity of the FLC material. The pure and GNPs-decorated MWCNTs doped FLC cells were analysed by means of various dielectric spectroscopic and optical measurements. The observed enhancement in the dielectric and electro-optical properties of the FLC material has also been studied with concentration of GNPs-decorated MWCNTs in FLC material. The GNPs-decorated MWCNTs/FLC composites are not only of fundamental importance, but also useful materials for device applications such as liquid crystal displays and memory devices.  相似文献   
8.
The thermal behavior of zinc carbodiimide Zn(NCN) was examined in the temperature range between 200 and 1100 °C in Ar atmosphere. The material starts to partially decompose at about 800 °C. Heat treatment at temperatures beyond 800 °C results in the formation of the byproducts nitrogen-containing bamboo-like multiwall carbon-nanotubes of 20–50 nm in diameter due to a partial decomposition of Zn(NCN) into dicyan (CN)2, zinc and nitrogen gas followed by the polymerization of the former product to paracyanogen (CN)n. At 1100 °C, the yield of the residual carbodiimide depends on the dwelling time and the initial amount of powder used for pyrolysis. One hour dwelling at 1100 °C yields ∼50% of the Zn(NCN) separated as pure material. Temperature-induced change in the band structure, namely indirect-to-direct band gap transition, is registered when compared the Zn(NCN) at room temperature with the residual material annealed at 1100 °C. The transition from indirect (Eg = 4.32 eV) to direct band gap (Eg = 4.93 eV) is due to the thermal annealing process which results in healing of crystal defects.  相似文献   
9.
Selective plasma etching and hydrogen plasma treatment were introduced in turn to improve field emission characteristics of screen-printed carbon nanotubes (CNTs) cold cathode, which was prepared by using slurry of mixture of multi-wall CNTs, organic vehicles and inorganic binder, i.e. silicon dioxide sol. The results show that selective plasma etching process could effectively remove parts of surface inorganic vehicle (SiO2) layer and expose more smooth and clean CNTs on cathode surface, which could significantly decrease the operating field of CNTs cathode. There are some nanoparticles emerging on the out of CNTs wall after hydrogen plasma treatment, which are equivalent to increase field emission point of cathode. At the same time, these nanoparticles can increase the local electric field of CNTs, which can decrease operating voltage of CNTs cathode and improve uniformity field emission.  相似文献   
10.
催化剂低温NH3选择催化还原NO的研究   总被引:4,自引:0,他引:4  
研究了碳纳米管担载的五氧化二钒(V2O5/CNTs)催化剂上NO低温选择催化还原反应(SCR)。与活性炭载体的催化剂作了对比,结果显示,在负载低含量V2O5时碳纳米管较活性炭显示了更好的催化能力,而且在SO2存在下,催化性能有更大幅度的提高。暂态反应实验显示,V2O5/CNTs 催化剂上NO选择催化还原反应遵循Eley Rideal机理,即反应发生于吸附态的NH3和气相或弱吸附的NO之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号