首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1367篇
  免费   195篇
  国内免费   992篇
化学   2039篇
晶体学   79篇
力学   21篇
综合类   30篇
数学   3篇
物理学   382篇
  2023年   32篇
  2022年   31篇
  2021年   22篇
  2020年   31篇
  2019年   37篇
  2018年   25篇
  2017年   28篇
  2016年   42篇
  2015年   39篇
  2014年   97篇
  2013年   95篇
  2012年   86篇
  2011年   85篇
  2010年   68篇
  2009年   99篇
  2008年   107篇
  2007年   74篇
  2006年   102篇
  2005年   97篇
  2004年   112篇
  2003年   106篇
  2002年   137篇
  2001年   121篇
  2000年   91篇
  1999年   83篇
  1998年   76篇
  1997年   66篇
  1996年   99篇
  1995年   87篇
  1994年   58篇
  1993年   48篇
  1992年   55篇
  1991年   46篇
  1990年   59篇
  1989年   66篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   10篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
排序方式: 共有2554条查询结果,搜索用时 15 毫秒
1.
通过微弧氧化(MAO)设备在锆(Zr)合金表面制备氧化陶瓷涂层. 研究工作电压对Zr合金表面MAO涂层形貌、硬度、粗糙度、元素分布和相结构的影响. 分析工作电压对Zr合金表面MAO涂层腐蚀和磨蚀性能的影响. 结果表明:MAO涂层表面具有典型的多孔和火山熔融特征,主要由m-ZrO2和t-ZrO2相组成. MAO涂层的粗糙度比基体高,且在电压为340 V时的粗糙度最高,达到1.36 μm. MAO涂层可分为内层致密层和外层多孔层,涂层厚度随着工作电压的增加而增加,厚度为5~9 μm. 电压为260 V的MAO涂层的结合强度最高,达到44.3 N. MAO涂层相比较于基体具有更好的耐腐蚀性能,电压为260 V的MAO涂层具有最高的自腐蚀电位(?0.205 V)和最低的腐蚀电流密度(6.24×10?9 A/cm2). 这是因为电压为260 V的MAO涂层具有最致密的结构,而内层致密层可以阻碍腐蚀液进入基体. MAO涂层的主要磨损机理为磨粒磨损和氧化磨损. 工作电压为260 V的MAO涂层的磨损率仅为Zr合金基体的1/4.   相似文献   
2.
采用一步电化学法在金属Bi板上成功制备了BiOCl0.5Br0.5/BiPO4双层异质结薄膜,并通过多种表征手段对薄膜的晶型结构、元素组成及化合价、形貌和尺寸特征、吸光性能和荧光强度进行了表征。结果表明,制备得到的复合薄膜呈现出上层为梭子状的BiPO4颗粒层分散在下层为BiOCl0.5Br0.5固溶体层的双层结构。这样的双层膜排列顺序使得光生电子和空穴在不同组分之间的界面电场作用下分别向薄膜两侧流动,促进光致载流子的分离,提高了BiOCl0.5Br0.5/BiPO4复合薄膜的光催化活性。活性测试结果表明,在模拟太阳光照射120 min后,BiOCl0.5Br0.5/BiPO4复合薄膜对苯酚的降解率达到了99.97%,是相同条件下制备的BiOCl/BiPO4和BiOBr/BiPO4复合薄膜对苯酚降解率的1.69倍和1.20倍。在苯酚的降解过程中,主要参与的活性物种是空穴(h+)和羟基自由基(·OH)。其光催化活性增强的原因归功于BiOCl0.5Br0.5/BiPO4复合薄膜拓宽的光谱吸收范围和增强的载流子分离率。  相似文献   
3.
为寻求新型热障涂层用陶瓷材料,本文采用高温固相烧结法制备了(Sm0.5Gd0.2Nd0.3)2(Hf0.3Ce0.7)2O7复合氧化物。利用XRD分析了其晶体结构,SEM分析其显微组织,膨胀仪测试其热膨胀性能,激光热导仪测试其热扩散系数。结果表明,成功制备了具有单一萤石晶体结构的(Sm0.5Gd0.2Nd0.3)2(Hf0.3Ce0.7)2O7复合氧化物。其显微组织结构致密,晶界清晰无其他相存在。由于复杂的元素组成和较大的原子量,其热导率明显低于7YSZ和Sm2Ce2O7。其较低的热膨胀系数则归因于B位离子较小的离子半径,但其热膨胀系数依然满足热障涂层的要求。  相似文献   
4.
采用共沉淀法成功地合成了不同Mg掺杂量的Ce1-xMgxO2(x=0.05、0.10、0.15、0.20)固溶体催化材料,并运用透射电子显微镜(TEM)、X射线衍射(XRD)、氮气吸附-脱附测试、拉曼光谱、X射线光电子能谱(XPS)、CO2程序升温脱附(CO2-TPD)等技术对这些材料进行了表征。结果发现,通过调控CeO2晶格中Mg的含量,可以调控所制备的Ce1-xMgxO2催化材料的粒径、比表面积、表面缺陷等。其中Ce0.90Mg0.10O2展现了最佳的表面性质,具有最小的平均粒径(约5.8 nm),最大的比表面积(约136 m2·g-1)以及最高的表面氧含量(31.98%)。将Ce1-xMgxO2催化材料涂覆在堇青石蜂窝陶瓷上制成整体催化剂,考察其对CO2和CH3OH直接合成碳酸二甲酯的催化性能。在140℃、2.4 MPa、反应2 h的条件下,Ce0.90Mg0.10O2整体催化剂上碳酸二甲酯的收率高达20.21%,催化效果明显优于CeO2和其余的Ce1-xMgxO2(x=0.05、0.15、0.20)催化材料。  相似文献   
5.
6.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   
7.
柳红军  周通  沈玉华  谢安建 《应用化学》2015,32(12):1410-1415
研究了Ce(Ⅲ)离子与巴比妥钠形成的配合物对双(对硝基苯基)磷酸酯(BNPP)的催化水解作用。 结果表明, Ce(Ⅲ)与巴比妥钠形成的配合物对BNPP的水解具有很高的催化活性,可使BNPP水解速率提高至自发水解时的1.52×108倍。 体系的pH值和温度对催化水解反应的影响,发现在温度为25 ℃和pH值为8.50的条件下,催化效果最佳。  相似文献   
8.
催化剂的微观结构在催化还原反应、有机物氧化反应及有机物转化反应中起着关键作用。本文利用无模板方法合成了多金核中空二氧化铈微球催化剂。将制备好的二氧化铈中空微球浸渍到一定浓度的氯金酸溶液中,然后多次洗涤除去表面吸附的氯金酸离子,最后通过硼氢化钠还原制成中空氧化铈微球包覆的多金核的核壳结构催化剂。将该核壳结构材料用于硝基苯酚加氢反应与金纳米粒子及氧化铈微球相比,多金核中空二氧化铈核壳结构表现出优越的活性和稳定性。通过这种浸渍洗涤再还原的简单方法合成的多金核二氧化铈催化剂有望应用于生物医药和能源环境等领域。  相似文献   
9.
朱驯  周秀芹  顾建华  项东升 《应用化学》2015,32(12):1386-1391
分别以Y沸石、活性碳和二氧化硅-壳聚糖(SiO2-CS)为载体、利用浸渍法制备了一系列负载型七水三氯化铈-碘化钠(CeCl3·7H2O-NaI)催化剂,考察了它们在叔丁基苯基醚的脱保护反应中的催化性能。 结果表明,SiO2-CS为载体的催化剂呈现出良好的催化性能和较高的稳定性。 另外,在中性条件下,SiO2-CS负载CeCl3·7H2O-NaI催化剂在叔丁基醚及1,3-二硫缩醛脱保护反应中呈现出较高的催化活性,从而避免使用强酸和强碱。  相似文献   
10.
用锆氧基离子与果胶反应制得果胶锆凝胶球,采用扫描电镜和红外光谱初步表征了凝胶球的结构,并测定了凝胶球的机械强度。研究了该凝胶球对苯甲酸的吸附性能。分别考察了果胶浓度、锆氧基离子浓度、吸附时间、p H值、温度及苯甲酸浓度对吸附性能的影响。结果表明,在298K下,果胶锆凝胶球对苯甲酸的吸附在4.5h左右达到平衡,当果胶的质量分数为3.0%,锆氧基离子质量分数为1.0%,苯甲酸初始浓度为500mg/L,吸附量可达73.89mg/g。所研究的吸附体系既适用于Freundlich方程,又适用于Langmuir方程;吸附过程为自发的放热、熵减过程,降低温度对吸附更有利。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号