首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9941篇
  免费   1202篇
  国内免费   5576篇
化学   12779篇
晶体学   427篇
力学   160篇
综合类   231篇
数学   33篇
物理学   3089篇
  2024年   5篇
  2023年   184篇
  2022年   234篇
  2021年   186篇
  2020年   240篇
  2019年   258篇
  2018年   158篇
  2017年   232篇
  2016年   276篇
  2015年   253篇
  2014年   510篇
  2013年   585篇
  2012年   518篇
  2011年   542篇
  2010年   504篇
  2009年   590篇
  2008年   648篇
  2007年   559篇
  2006年   633篇
  2005年   684篇
  2004年   725篇
  2003年   727篇
  2002年   682篇
  2001年   655篇
  2000年   609篇
  1999年   592篇
  1998年   493篇
  1997年   594篇
  1996年   584篇
  1995年   593篇
  1994年   472篇
  1993年   387篇
  1992年   434篇
  1991年   408篇
  1990年   335篇
  1989年   391篇
  1988年   78篇
  1987年   59篇
  1986年   34篇
  1985年   32篇
  1984年   20篇
  1983年   14篇
  1982年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《低温与超导》2021,49(4):109-114
基于CFD(Computational Fluid Dynamics)的仿真技术,开展对PCB(Printed Circuit Board)板级热仿真。通过将PCB的器件布局及覆铜层布线模型导入仿真软件,建立板级详细仿真模型,并与常用的覆铜层等效导热系数的仿真方法进行对比。两种仿真方法和试验分析的结果对比表明,板级详细热力学仿真与试验结果的差值在5%以内,其能够准确分析PCB各覆铜层及器件温度分布。  相似文献   
2.
生物质等绿色资源的高效转化利用是催化科学的重要发展方向.锡硅分子筛因具有优良的催化性能而得到相关研究者的普遍关注.准确构建催化剂活性中心结构/酸性与催化反应性能之间的构效关系是新型高效催化剂设计与研发的基础.固体核磁共振(NMR)是研究分子筛活性中心局域结构、酸特性与催化反应机理的重要手段.本文简述了近年来固体NMR技术在锡硅分子筛研究领域的一系列主要进展,并进行了展望.  相似文献   
3.
二甲氧基甲烷(Dimethoxymethane, DMM)作为一种基础有机化学品, 在树脂、溶剂、燃料等领域具有广泛用途. 传统合成方法采用甲醇甲醛缩合, 反应效率比较低. 亚硝酸甲酯(CH3ONO)是一种性质活泼的气体, 可由甲醇、O2、NO在无需催化剂的条件下获得, 其反应活性比甲醇高很多. 通过亚硝酸甲酯在常压条件下催化分解可以高效制备DMM. 本工作系统研究了不同类型分子筛的酸性对亚硝酸甲酯催化分解制备DMM的影响规律, 催化活性顺序为: NaY (97%)=HY (97%)>HZSM-5 (90%)>Hβ (89%)>NaZSM-5 (18%)>Naβ (6%), DMM选择性顺序为: NaY (53%)>HY (12%)=Naβ (12%)>NaZSM-5 (7%)>Hβ (4%)>HZSM-5 (3%), 其中NaY分子筛是一种性能优异的亚硝酸甲酯分解制备DMM的催化剂. 通过X射线衍射(XRD)、比表面及孔隙度分析(BET)、扫描电子显微镜(SEM)、吡啶红外(Py-FTIR)等结构表征手段, 发现分子筛的酸性位点是促进亚硝酸甲酯分解的活性中心, 而Na+和Al物种的Lewis酸是高选择性生成DMM的关键. 本工作可为DMM提供一种新的高效合成路线.  相似文献   
4.
轮轨黏着是铁路运输中的关键基础性科学问题之一,而轮轨接触界面良好的黏着状态是列车安全和高品质运行的根本保障. 轮轨系统作为1个开放的系统,受到各种自然环境因素的影响,如湿度、温度、水、风沙甚至铁氧化物,而所有的这些环境因素都会影响轮轨接触界面的黏着状态和损伤行为. 本文中综述了水、湿度、温度和风沙等自然环境因素对轮轨黏着特性影响规律的研究进展,分析了自然环境因素下轮轨界面铁氧化物特征,重点探讨了自然环境因素对铁氧化物形成的影响及其对轮轨接触黏着特性的影响规律和作用机理,并提出了轮轨黏着的未来研究方向.   相似文献   
5.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   
6.
直接以氯金酸作为主盐、 羟基乙叉二膦酸(HEDP)作为镀液稳定剂和镀层细化剂、 结合添加剂, 组成亚硫酸盐无氰镀金新工艺; 研究镀液稳定性、 镀层形态及金电沉积机制。结果表明, HEDP可明显提升镀液稳定性;不含HEDP的亚硫酸盐镀金液中, 镀层呈棒状晶粒并随沉积时间延长而逐渐生长,导致镀层外观随镀层厚度增加由金黄色转变为红棕色。镀液含有HEDP时, 金晶粒形态由棒状转变为棱锥状, 且棱锥状晶粒随沉积时间延长生长速率较小, 镀层厚度为1 μm时仍呈现金外观。电化学实验表明金电沉积不经历成核过程。  相似文献   
7.
本文设计了一种梯形的周期极化掺镁铌酸锂(PPMgLN)波导,并通过在传播方向上引入温度梯度来拓宽其倍频(SHG)过程的泵浦光源可接收带宽。通过有限差分的光束传输法,计算波导的有效折射率,并进行波导尺寸的设计。结果表明,通过改变梯形波导不同位置的温度,使其形成一个温度梯度,可拓宽泵浦光源的波长可接收带宽。本文所设计的PPMgLN波导最大泵浦光源可接收带宽为C波段,即1 530~1 565 nm,该波导可倍频C波段,得到输出波段带宽为765~782.5 nm,温度调谐范围为30~150 ℃。  相似文献   
8.
9.
10.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号