首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   153篇
  国内免费   140篇
化学   229篇
晶体学   20篇
力学   105篇
综合类   10篇
数学   47篇
物理学   272篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   16篇
  2020年   11篇
  2019年   14篇
  2018年   9篇
  2017年   17篇
  2016年   18篇
  2015年   19篇
  2014年   58篇
  2013年   41篇
  2012年   25篇
  2011年   21篇
  2010年   39篇
  2009年   47篇
  2008年   33篇
  2007年   48篇
  2006年   29篇
  2005年   32篇
  2004年   41篇
  2003年   33篇
  2002年   15篇
  2001年   15篇
  2000年   17篇
  1999年   8篇
  1998年   16篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
排序方式: 共有683条查询结果,搜索用时 15 毫秒
1.
冯谦  张英杰  董鹏  李雪 《人工晶体学报》2019,48(12):2278-2283
通过喷雾干燥-固相煅烧法制备了球形钛酸钾.不同于传统喷雾干燥工艺采用固态钛源进行制备,本文采用的前驱体是钾盐,分散剂和钛酸四丁酯制备出的硝酸氧钛的混合溶液.由于制备方法中前驱体为原子级均匀分布,化学计量比可精确控制,制备出的材料颗粒细小,粒径、成分分布均匀,电化学性能优异.同时研究了不同钾钛摩尔比以及煅烧温度对球形钛酸钾的形貌和成分的影响,并研究了其作为钾离子电池电极材料的电化学性能.结果表明,钾钛摩尔比为0.816,煅烧温度为 800 ℃时钛酸钾的电化学性能最好,首圈容量 185.1 mAh/g,30 圈后容量为173.9 mAh/g,循环100圈后还有169.7 mAh/g的容量.  相似文献   
2.
本文探究了多个影响因素对大豆脲酶诱导碳酸钙沉淀(SICP)的影响,以优选出主要影响因素并提供其最佳范围。首先分析了脲酶浓度和温度对脲酶活性的影响;之后通过正交实验设计,进行25种工况的SICP水溶液实验,研究不同因素组合下Ca2+利用率的变化规律;最后借助扫描电子显微镜观测不同工况下生成碳酸钙的形态。结果表明:低温有利于脲酶的保存及活性发挥,5 ℃时脲酶活性能保持21 d以上;同一温度下,脲酶浓度越大,脲酶初始活性越高,脲酶完全失活所需时间越短。pH值、脲酶与胶结液体积比是影响Ca2+利用率的主要因素。为达到较高的Ca2+利用率,脲酶和胶结液最佳体积比为1,氯化钙与尿素最佳浓度比为1.5,Ca2+最佳浓度为1 mol/L。当脲酶浓度较低时生成的六面体状碳酸钙较多;随着脲酶浓度的增大,所沉淀的碳酸钙向球形转变。大豆中富含的天冬氨酸是控制碳酸钙形态的重要因素。  相似文献   
3.
由摩尔比分别为1:2和1:8的NiCl2·6H2O和Na2B4O7·10H2O作为反应物, 合成两种非晶态镍硼酸盐, 同时通过水热法合成β-Ni(OH)2. 化学分析和热重-微商热重法(TG-DTG)分析结果确定两种非晶态镍硼酸盐的分子组成分别为NiO·0.8B2O3·4.5H2O和NiO·B2O3·3H2O. 激光拉曼(Raman)实验结果表明镍硼酸盐样品中主要存在的硼氧阴离子为B3O3(OH)52-和B2O(OH)62-. 同步辐射扩展X射线吸收精细结构(EXAFS)方法对样品进行结构解析, 通过数据拟合给出样品中Ni 原子周围近邻配位原子种类、配位数以及原子间距离. 用不同晶体结构作为标准对两种非晶态镍硼酸盐进行拟合的结果表明, 样品中Ni 原子周围局域结构与Ni3B2O6晶体(ICSD No.31387)中的吻合较好. Ni 原子周围配位原子为O、B和Ni, 对于NiO·0.8B2O3·4.5H2O, 配位数分别为5.7、3.8和3.8, 配位距离分别为0.208、0.263 和0.311 nm; 对于NiO·B2O3·3H2O, 配位数分别为6.0、4.0 和4.0, 配位距离分别为0.207、0.262和0.310 nm.  相似文献   
4.
球形封闭容器内一个简单的煤粉燃烧爆炸模型   总被引:1,自引:0,他引:1  
徐丰  浦以康 《爆炸与冲击》1998,18(2):112-117
在分析了大量球形封闭容器内煤粉燃烧爆炸实验数据基础上,考虑了煤粉燃烧爆炸机理所涉及的湍流燃烧、相变、各种化学反应动力学过程等复杂因素,并且对球形封闭容器内由于煤粉混合不均匀造成的燃烧不充分给予了考虑,得到了球形封闭容器内煤粉燃烧爆炸特征的数值计算结果,计算的压力-时间曲线与实验结果符合较好。  相似文献   
5.
The long time behavior of solution of the Hasegawa-Mima equation with dissipation term was considered. The global attractor problem of the Hasegawa-Mima equation with initial periodic boundary condition was studied. Applying the uniform a priori estimates method, the existence of global attractor of this problem was proved, and also the dimensions of the global attractor was estimated.  相似文献   
6.
静压气体球轴承支承球形转子的干扰力矩分析   总被引:4,自引:0,他引:4  
中心小孔供气单向受载球面气体轴承可以用于球形转子的静平衡测量。对作用于转子上的干扰力矩进行估算是平衡装置设计的重要部分。本在一定假设条件下推导了由粘性剪切应力和气膜支撑力引起的作用于转子上的干扰力矩。干扰力矩以轴承包角、中心气室张角、气膜压力、转子转速、转子旋转轴位置、失中度、转子非球表示。以干扰力矩最小为准则分析了这些参数的影响,结论有助于静平衡装置的优化设计以及对精度的进一步分析。  相似文献   
7.
球形钨合金破片终点弹道性能实验研究   总被引:6,自引:0,他引:6  
实验研究了球形钨合金破片的速度衰减规律、爆轰驱动下的变形和破碎、对半无限钢靶的侵彻以及对薄钢靶的贯穿。结果表明:(1)破片长距离(120m)飞行时的衰减系数为常数,阻力系数与破片初速成线性关系;(2)在爆轰驱动下,直径为6.0和7.5mm的破片破碎率为2%~3%,而直径为8.5mm的破碎率为45%;(3)破片长距离飞行后仍有很强的穿甲能力。  相似文献   
8.
岩石爆破的粉碎区及其空腔膨胀   总被引:13,自引:0,他引:13  
张奇 《爆炸与冲击》1990,10(1):68-75
本文根据爆炸冲击波的理论分析,讨论了柱形装药和球形装药的粉碎区半径、炮孔近区的压缩比、爆破空腔及其空腔的发展时间。通过分析,给出柱形装药的爆炸近区参数。计算结果表明:2号铵梯岩石炸药柱形装药在岩石介质中产生的粉碎区半径一般是炮孔半径的1.65~3.05倍,球装药在岩石介质中产生的粉碎区半径是球形装药半径的1.28~1.75倍;柱形装药在孔壁处的冲击波波长与炮孔半径属于同一量级;粉碎区内的平均压缩比为1.05~1.10。  相似文献   
9.
球形压痕技术在材料力学属性,诸如硬度,弹性模量等的测量中得到了广泛的应用。应用Twyman-Green及云纹干涉法并配合相移技术,本文对IN783合金进行了一系列的球形压痕实验研究,并对残余压痕的面内(u, v)及离面( w)变形场进行了定量测量和分析。应用面内变形测量结果,进一步对试件表面的应力-应变分布进行了分析和计算,并在离面变形场的基础上,确立了压痕周围的弹塑性边界,从而进一步应用面内的分析结果,得到材料的屈服强度。应用压痕实验的接触半径和压力并配合Tabor经验公式,本文进一步得到了材料的应力应变曲线。实验结果与已知的IN783合金相吻合。对所涉及的一系列压痕实验,本文也进行了二维有限元分析并得到了比较一致的结果。  相似文献   
10.
考察了沥青基球形活性炭(PSAC)对葡萄糖分子的吸附行为,以探讨其治疗糖尿病的可能性.在不同吸附时间、不同活性炭用量及不同浓度等条件下,测定沥青基球形活性炭对葡萄糖分子的吸附量,根据Langmuir和Freundlich等温线方程对吸附等温线数据进行拟合,检验实验数据与方程的吻合度,确定方程参数.同时,研究了葡萄糖和α-淀粉酶在沥青基球形活性炭上的竞争吸附行为.结果表明,所选用沥青基球形活性炭对葡萄糖分子的吸附在5h内达到吸附平衡;葡萄糖的初始浓度为3g/时,平衡吸附量为71mg/g;平衡吸附量受葡萄糖分子空间构象的影响,且随葡萄糖浓度的升高而增加,吸附等温线数据与Langmuir方程吻合,说明该吸附为单分子层吸附.在葡萄糖分子和α-淀粉酶的共存环境下,沥青基球形活性炭对葡萄糖有较好的吸附选择性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号