首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5245篇
  免费   600篇
  国内免费   3660篇
化学   7501篇
晶体学   147篇
力学   57篇
综合类   162篇
数学   17篇
物理学   1621篇
  2024年   37篇
  2023年   152篇
  2022年   179篇
  2021年   154篇
  2020年   222篇
  2019年   214篇
  2018年   166篇
  2017年   211篇
  2016年   208篇
  2015年   209篇
  2014年   402篇
  2013年   436篇
  2012年   402篇
  2011年   394篇
  2010年   390篇
  2009年   390篇
  2008年   390篇
  2007年   364篇
  2006年   347篇
  2005年   323篇
  2004年   358篇
  2003年   360篇
  2002年   330篇
  2001年   347篇
  2000年   250篇
  1999年   233篇
  1998年   206篇
  1997年   217篇
  1996年   232篇
  1995年   224篇
  1994年   185篇
  1993年   180篇
  1992年   185篇
  1991年   181篇
  1990年   160篇
  1989年   167篇
  1988年   35篇
  1987年   17篇
  1986年   6篇
  1985年   16篇
  1984年   14篇
  1983年   10篇
  1951年   1篇
  1936年   1篇
排序方式: 共有9505条查询结果,搜索用时 93 毫秒
1.
2.
为实现激波风洞试验尾气氦气(氦含量>80%)的回收和循环利用,研制了一套氦气回收与纯化系统。该系统采用三塔真空变压吸附的技术将试验尾气中的氮气等杂质气体去除,得到纯度大于98%的氦气。系统采用开式纯化和闭式纯化相结合的工艺方式,将氦气的回收率提高到97%。系统调试结果表明,研制的氦气回收纯化系统在常温条件下实现了风洞试验尾气的回收、纯化和循环使用,有效地降低了风洞运行和维护成本,同时也节约了氦气资源。  相似文献   
3.
常会  范文娟 《人工晶体学报》2018,47(11):2361-2369
使用改良的hummers法制备出的氧化石墨烯为载体,采用共沉淀法制备出磁性CoFe2O4/氧化石墨烯(MGO),再使用三乙烯四胺(TETA)对磁性CoFe2O4/氧化石墨烯进行氨基功能化,制备出氨基功能化磁性CoFe2O4/氧化石墨烯吸附剂.采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和扫描电子显微镜(SEM)对TETA-MGO的物相、化学组成和微观形貌进行表征,以TETA-MGO作为吸附剂去除电镀废水中Cr(Ⅵ),探讨吸附性能和吸附机理,分析TETA-MGO在外加磁场下的液固分离和再生吸附性能.结果表明纳米级立方尖晶石相磁性CoFe2O4均匀生长于氧化石墨烯的表面和片层之间,TETA通过C-N键与磁性氧化石墨烯(MGO)相连,氨基功能化成功,活性吸附位点增点.室温下,pH =2时吸附效果最佳,吸附120 min时达到吸附平衡,平衡吸附量约为48.66 mg·g-1,TETA-MGO对Cr(Ⅵ)的吸附动力学和吸附热力学可分别使用拟二级动力学模型和Langmuir等温吸附模型描述,吸附过程主要属于化学吸附控制的单分子层吸附,使用外加磁场可以对TETA-MGO实现简单的固液分离,TETA-MGO经过6次再生吸附后,对Cr(Ⅵ)的吸附量仅下降19.67;,说明具有良好的循环再生吸附能力.  相似文献   
4.
以粗氧化铋和浓硝酸为原料,采用炭吸附共沉淀法制备氧化铋(Bi2 O3)纳米粉体.通过热重分析仪(TG-DTA)、X射线衍射仪(XRD)、紫外-可见分光光度计(UV-Vis)、透射电子显微镜(TEM)对得到的粉体的焙烧温度、物相、光吸收性能及微粒尺寸进行表征.结果显示:活性炭的加入有效阻止了纳米氧化铋在制备、干燥以及焙烧过程的团聚和烧结;在500℃煅烧制备的Bi2 O3粉体结晶度高、颗粒分布均匀,平均晶粒尺寸为10.8 nm,比表面积为86.43 m2·g-1;加入活性炭煅烧得到的Bi2 O3粉体在可见光区域吸收性能明显增强,对可见光有更好的吸收性能.评价纳米Bi2O3光催化活性是利用可见光光催化降解甲基橙(MO)目标污染物,60 min内甲基橙降解率达到91.77;.  相似文献   
5.
以六水氯化镁和六次甲基四胺为原料,采用水热法合成四方体MgO,考察其对有机染料甲基橙和亚甲基蓝的吸附行为.通过TGA-DTA、SEM、XRD、N2-sorption和FT-IR等手段表征样品.结果表明,原料浓度、温度和表面活性剂对四方体MgO结构的形成影响较小,而反应时间的延长有助于有序结构的组装.温度170℃、时间24h、MgCl2·6H2O与C6H12N4浓度比为1∶2和表面活性剂PVP是制备四方体MgO的最佳条件.在溶液浓度10mg · L-1的单一吸附实验过程中,四方体MgO对甲基橙和亚甲基蓝的去除率分别为91.3;和22.3;,吸附过程均为单层吸附且符合Langmuir等温吸附模型和伪二级吸附动力学方程.在溶液浓度40 mg·L-1、甲基橙和亚甲基蓝浓度比3∶1的混合溶液吸附过程中,四方体MgO对甲基橙和亚甲基蓝的去除率分别为80.1;和97.9;.  相似文献   
6.
为得到新型高效多相催化剂,有效去除废水中的染料,以Cu(Ac)_2与CuFe_2O_4@PDA为原料制备了催化剂CuFe_2O_4@PDA-Cu.通过IR、XRD、XPS、UV-Vis、DRS技术对催化剂的性能进行了表征,考察了温度、H_2O_2用量、催化剂用量、pH值、盐等对催化活性的影响.利用HPLC测定降解产物,采用自由基捕获和抑制实验进行机理验证,发现催化剂是核壳结构.温度升高、pH值升高、H_2O_2和催化剂用量的增加均有利于提高催化活性;氯化物、硫酸盐、硝酸盐和磷酸盐不影响催化效果,溴化物和亚硝酸盐降低了催化效果.得到的最优降解条件为:T=30℃,催化剂用量10mg·L~(-1),pH=9,过氧化氢用量10mmol·L~(-1),染料浓度30mg·L~(-1).最优条件下催化剂可循环使用4次以上;甲基橙、茜素红和罗丹明B的去除率为100%;染料R0213、O0118和B0115的去除率大于60%.降解产物有草酸、马来酸和CO_2.甲基橙、茜素红和罗丹明B降解后COD_(Mn)=2~4mg·L~(-1).水杨酸捕获·OH生成2.5-二羟基苯甲酸,叔丁醇抑制染料降解.结果表明,催化剂可活化H_2O_2产生·OH,·OH攻击染料分子开环降解直至矿化.该研究为开发高效多相催化剂,有效去除废水中的染料提供了科学依据.  相似文献   
7.
随着抗生素药物(如四环素)的大量使用,近几年抗生素的环境行为和毒性已经成为人们的研究焦点和热点.我国的地表水、地下水、市政污水、养殖废水等不同水体中都检测到了四环素等抗生素药物,引发的水生态问题受到了众多学者的广泛关注.生物炭因具有制备来源广泛且易得廉价、比表面积大、孔隙发达、官能团种类较多等优点被学者们重点关注,已有众多文献报道发现不同种生物炭对四环素的吸附具有优越的性能.本文综述了近年来不同生物质制备的生物炭对四环素的吸附影响以及不同水化条件对四环素对生物炭吸附特征的影响,并阐述了生物炭吸附四环素过程中所涉及的机理.对进一步探究生物炭对四环素吸附的影响具有一定的指导意义.  相似文献   
8.
利用失重分析、 极化曲线、 电化学阻抗谱和扫描电子显微镜等研究了辛烷基二甲基苄基季铵盐离子液体(ODBA)对1 mol/L盐酸溶液中Q235钢的缓蚀性能, 并分析了其在Q235钢表面的吸附行为. 失重分析结果表明, 随着ODBA浓度的增加, 缓蚀效率逐渐提高, 在ODBA质量浓度为0.2 g/L、 温度为30 ℃时, 缓蚀效率可达95.53%; 电化学测试结果与失重分析结果一致; 热力学研究结果表明, ODBA在碳钢表面的吸附是放热过程, 且遵循Langmuir吸附等温线, 是以化学吸附为主的混合型吸附; 同步热分析测试表明ODBA具有良好的热稳定性.  相似文献   
9.
以甲基丙烯酸二甲氨基乙酯为母体、 对氯甲基苯乙烯为季铵化试剂, 合成了一种具有疏水结构的甲基丙烯酸二甲氨基乙酯型离子液体(DEMA). 通过失重实验、 电化学分析、 原子力显微镜(AFM)、 接触角测试和量子化学计算等研究了DEMA在1 mol/L盐酸中对Q235钢的缓蚀性能, 并揭示了其在Q235钢表面的吸附行为和吸附机理. 失重实验结果表明, DEMA在盐酸中对Q235钢具有优异的缓蚀效果, 且在较高温度(60 ℃)下也能保持高效吸附; 电化学实验结果与失重测试结果一致; 接触角测试结果表明, DEMA可明显增强Q235钢表面的疏水性; 分析热力学参数可知, DEMA在Q235钢表面的吸附为自发、 放热过程, 符合Langmuir等温式, 且以化学吸附为主; 量子化学计算结果证实DEMA的结构中包含大量吸附活性位点.  相似文献   
10.
将五硼酸铵、 氨硼烷络合物和氧化镁混合, 球磨均匀后, 在1200 ℃及0.6 L/min流动氨气保护条件下退火6 h, 即可在氧化铝基片上收集到白色毛状产物. 采用X射线衍射(XRD), 红外光谱(FTIR)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 拉曼光谱(Raman)、 紫外-可见吸收光谱(UV-Vis)和荧光光谱(PL)对产物进行了表征. 结果表明, 样品呈一维线状分级结构, 长度大于5 mm, 中间为竹节状空心结构, 内部管径为50~350 nm, 外径范围为200~800 nm. 分级结构表面负载了大量氮化硼(BN)纳米薄片, 单个薄片厚度约为13 nm. 薄片弯曲褶皱, 相互交织, 构成1个氮化硼片层, 其厚度约为50~200 nm. UV-Vis和PL光谱测试结果表明, 氮化硼纳米管(BNNT)分级结构在紫外光材料领域具有一定的应用潜力, 且对亚甲基蓝具有良好的吸附能力(7 min即可吸附71%, 107 min时可吸附96%). 对比实验结果表明, BNNT的生长机理遵循气-液-固相(VLS)模型, 而表面负载的超薄BN片的生长机理遵循气-固相(VS)模型.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号