首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   125篇
  国内免费   118篇
化学   145篇
晶体学   30篇
力学   12篇
综合类   4篇
物理学   280篇
  2023年   11篇
  2022年   6篇
  2021年   12篇
  2020年   7篇
  2019年   17篇
  2018年   9篇
  2017年   15篇
  2016年   14篇
  2015年   18篇
  2014年   30篇
  2013年   31篇
  2012年   26篇
  2011年   24篇
  2010年   15篇
  2009年   22篇
  2008年   16篇
  2007年   20篇
  2006年   23篇
  2005年   20篇
  2004年   17篇
  2003年   14篇
  2002年   21篇
  2001年   8篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   14篇
  1996年   5篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
1.
质子交换膜燃料电池(PEMFC)具有清洁、高效等优点,是一种理想的汽车动力电源.然而,由于其阴极氧还原反应(ORR)速率缓慢,需要使用大量的Pt基催化剂,导致燃料电池成本居高不下,严重制约了PEMFC的商业化发展.将Pt与过渡金属Fe, Co, Ni等形成合金,对表面Pt原子的几何结构和电子结构进行调变,可以有效提高催化剂的活性,实现Pt用量和燃料电池成本的降低.但是目前合金催化剂多采用溶剂热、浸渍-高温退火等制备方法,使用有毒有害试剂和难清洗的表面活性剂,且过程复杂、能耗高,不利于大规模化生产.此外,合金中过渡金属占比高,在燃料电池工况下,大量过渡金属溶解,加速了膜的降解,导致实际PEMFC性能的降低.对此,我们探索了一种简便有效的方法制备高活性、高稳定性的碳载Pt-Co催化剂.在没有添加表面活性剂的情况下,采用硼氢化钠辅助乙二醇还原法合成了具有超小尺寸和均匀分布的Pt-Co纳米颗粒,后续酸刻蚀处理去除不稳定的Co原子,重组双金属纳米颗粒的表面结构形成富Pt壳层,进一步提高了催化剂的活性和稳定性.通过电感耦合等离子体、X射线粉末衍射、透射电子显微镜、高分辨透射电子显微镜、高角环形暗场-扫描透射-元素分布及光电子能谱等物理表征证实了微量Co改性的碳载超细铂合金纳米颗粒的组成和结构.进一步对催化剂进行旋转圆盘电极和单电池测试,结果表明, Pt_(36)Co/C具有明显高于商业化Pt/C的有效电化学活性面积和电池性能.此外,加速衰减测试和衰减前后的电镜图片表明, Pt_(36)Co/C催化剂的稳定性相较于Pt/C亦有所增强.分析Pt-Co/C催化性能提高的原因,主要归于以下三点:(1)催化剂纳米颗粒在载体上分布均匀,且具有超小的粒径尺寸,提供了大量的三相反应界面位点;(2)双金属配体和电子效应的协同作用,降低了氧化物质在催化表面的吸附能力,加速了ORR的电催化动力学;(3)酸蚀刻导致的不稳定Co的溶解及催化剂表面结构的重排,形成了富Pt壳层结构,有利于提高催化剂的稳定性.这种简单有效的合金制备方法可以在电催化领域推广使用.  相似文献   
2.
借助原位液体透射电镜,我们观察并研究了钯纳米棒溶液环境下的氧化刻蚀的微观行为及机理。通过改变钯纳米棒所处的液体环境,有效地控制了钯纳米棒的氧化刻蚀行为。由于端部具有较高的反应活性,钯纳米棒在氯化铁溶液中的氧化刻蚀会选择沿着轴向进行,具有明显的各向异性。当反应在超薄液层进行时,钯纳米棒的氧化刻蚀会变为准各向同性。这种行为是由于超薄溶液中溶解产物以及氧化物的扩散被抑制,在纳米棒端部选择性发生的氧化刻蚀会受到阻碍。最后,我们发现在钯纳米棒端部选择性沉积金,可以保护纳米棒的端部不受氧化,从而能控制刻蚀沿着钯纳米棒的径向进行。本文的研究结果对贵金属纳米晶的结构参数的精确调控以利于实际应用具有重要的意义。  相似文献   
3.
齐伟  贺书凯  谷渝秋 《强激光与粒子束》2019,31(5):056006-1-056006-5
CR39可以用于激光等离子物理实验中的离子探测,并给出离子数目、种类和能量信息。通过采用唯象模型,利用离子在CR39中径迹形成的阻止本领动力学方程以及粒子群智能算法对径迹形成的过程进行了数值化模拟,研究了CR39中离子径迹在刻蚀过程中的演化过程,获得了入射离子能量和径迹直径、深度的对应关系,并且发现当离子射程与刻蚀深度相等时,径迹深度最大,给出了利用总刻蚀时间计算最大径迹深度对应的临界能量的公式。  相似文献   
4.
张科  胡子阳  黄利克  徐洁  张京  诸跃进 《物理学报》2015,64(17):178801-178801
目前有机光伏电池的吸光活性层电学传输特性和光学吸收特性的不匹配是制约其能量转换效率提升的主要原因之一. 通过陷光结构对入射光进行调控, 提高电池对光的约束和俘获能力从而达到“电学薄”和“光学厚”的等效作用, 是解 决有机光伏电池电学和光学不匹配的有效手段. 本文采用湿法刻蚀技术获得了系列时间梯度的绒面氧化锌掺铝薄膜, 并将其作为有机光伏电池的入射陷光电极, 显著增强了电池的光学吸收. 研究发现, 当使用浓度0.5%的稀HCL腐蚀30 s后的氧化锌掺铝薄膜作为入射电极后, 电池的光电性能和效率显著增强. 基于此绒面电极电池的电流密度比平面结构的电池提高了8.17%, 效率改善了11.29%. 通过对绒面电极表面的修饰处理, 实现了电极与光活性层之间良好的界面接触, 从而减小了对电池的开路电压和填充因子的影响.  相似文献   
5.
感应耦合等离子刻蚀技术研究   总被引:2,自引:0,他引:2  
依据感应耦合等离子体的刻蚀机理,对影响刻蚀的两个重要参数及先进的硅刻蚀技术进行了较深入的研究,并对影响刻蚀效果的参数进行了实验研究,刻蚀出了20μm深,2μm宽的谐振器结构,得到了最佳的工艺参数。  相似文献   
6.
等离子刻蚀技术是超大规模集成电路制备工艺中不可或缺加工技术.在半导体晶圆尺寸不断增大以及特征尺寸不断缩少的发展进程中,晶圆的污染问题越来越突出.而刻蚀机腔室材料作为晶圆的主要污染源之一,其耐等离子刻蚀性日益受到人们的关注.本文主要介绍耐等离子体刻蚀腔体材料的特性及目前国内外的研究与发展现状.  相似文献   
7.
利用深反应离子刻蚀技术或湿法腐蚀在硅上制作光栅结构,将与光栅浸润的液体作为载体携带铋纳米颗粒进入光栅结构内,形成致密排列,从而制作出X射线吸收光栅.致密地填充了周期为42μm、刻蚀深度为150μm的光栅结构,比较了其与微铸造法制作的铋块体吸收光栅的X射线吸收性能,并通过填充周期为24μm和6μm的光栅结构,研究了光栅周期与填充致密性之间的关系.扫描电镜测试结果显示自由沉降法可有效制作较大周期光栅,但对周期为6μm光栅结构填充的致密性不佳。分析结果表明,对于小周期吸收光栅,需筛选所用填充颗粒,以保证颗粒粒径远小于光栅槽宽.基于纳米颗粒的自由沉降法可降低光栅制作成本及技术门槛,方便实现大面积吸收光栅的制作.  相似文献   
8.
硅纳米线是新型一维半导体纳米材料的典型代表。利用阳极氧化铝薄膜为模版复制出具有有序纳米结构的金膜,在金的催化辅助下对单晶硅进行湿法刻蚀,得到尺寸、形状、分布可控的硅纳米线阵列,并对其光学特性进行了研究。研究结果表明,金代替银作为催化剂,可以有效地抑制二次刻蚀,金的化学性质相对于银更加稳定,克服了银膜在较高的温度或较长刻蚀时间下产生的结构性破坏,得到形貌规整、尺寸可控的硅纳米线阵列。对该阵列在400 nm~1 200 nm波段的反射率、透过率进行了测试,并对比分析了金模板催化与传统方法机理的异同。测试结果表明,相较于传统金属辅助化学刻蚀法,文中提出的金模板催化法制备的硅纳米线阵列尺寸及分布更加均匀可控,在宽光谱范围内的抗反射性得到了显著提高。  相似文献   
9.
针对石英晶体各向异性的特点,设计了一种驱动梁为双"W"截面形状的石英音叉微机械陀螺,通过在驱动梁表面凹槽两端设置深凹槽,有效提高了凹槽侧壁的陡直性,进而提高了驱动梁内部电场的激励效率和陀螺灵敏度。采用有限元仿真的方法,分析了不同截面形状的驱动梁压电激励力的相对大小,优化设计了陀螺芯片结构参数。依据陀螺芯片的结构,设计了合理的工艺方案并在3英寸石英圆片上制作出了三种驱动梁截面形状的陀螺器件,测试结果表明,相对于矩形驱动梁截面的陀螺芯片,双"W"形驱动梁截面的陀螺芯片的灵敏度提高约60%。  相似文献   
10.
铜表面高疏水薄膜的制备及摩擦学性能的研究   总被引:3,自引:3,他引:0  
通过简单两步法在金属铜表面构筑高疏水薄膜,首先金属铜经氢氧化钠化学刻蚀处理后在表面构筑微纳结构薄膜,然后覆盖硬脂酸薄膜以实现高疏水.采用扫描电子显微镜、X-射线光电子谱、傅里叶红外光谱仪和接触角测量仪等手段表征了金属铜表面高疏水薄膜的形成机制和表面形貌,并利用微纳米摩擦磨损试验机研究了高疏水薄膜的减摩耐磨特性.研究结果发现:在氢氧化钠处理导致的表面微织构化效应以及脂肪酸自组装薄膜的纳米润滑效应的联合作用下,金属铜表面形成的高疏水薄膜具有明显的减摩和耐磨特性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号