首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   27篇
  国内免费   21篇
化学   6篇
力学   88篇
综合类   4篇
数学   3篇
物理学   39篇
  2023年   7篇
  2022年   6篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   9篇
  2014年   9篇
  2013年   10篇
  2012年   12篇
  2011年   8篇
  2010年   14篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
1.
低雷诺数俯仰振荡翼型等离子体流动控制   总被引:2,自引:2,他引:0  
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   
2.
随着绿色环保的现代轨道交通设计理念发展,受电弓减阻成为制约高速列车提速的关键问题之一。高速列车运行时,受电弓暴露于流线型车体之外,是列车气动阻力的主要来源之一,随着列车速度的提高,受电弓的减阻问题亟待解决。本文针对某型高速受电弓,基于计算流体动力学仿真技术,分析了整弓气动阻力分布,确定滑板与底座的压差阻力是气动阻力的主要来源,提出了滑板流线型减阻外壳与底座包裹流线型减阻外壳的优化方案,并与原模型对比验证了减阻效果。计算表明,减阻模型在350 km/h运行时,整弓气动阻力在开口、闭口时分别降低25.13%与24.19%。  相似文献   
3.
减阻是解决航行体提速和增程的主要技术途径之一,对缓解日益严峻的能源危机极为重要.在重力式管道实验系统中,测试给出了湍流状态下不同通气速率时减阻率随雷诺数及沟槽无量纲间距的变化规律和气膜铺展状态,对比分析了单纯超疏水表面与超疏水沟槽表面上通气时减阻效果的差异.实验板材质为无色亚克力,沟槽结构采用机械方法加工,并在表面喷涂超疏水涂层.结果表明,持续通气能解决超疏水沟槽表面气膜层流失问题,实现气膜层长时间稳定维持;恒定雷诺数下,随通气速率增大,超疏水沟槽表面气膜铺展更趋均匀,减阻率上升;由于通气速率影响气膜横向扩展能力,致使恒定通气速率下,减阻率随雷诺数的变化呈现两种模式;在固定雷诺数及通气速率时,减阻率随沟槽尺寸的扩大先增后减, S~+≈76时减阻率最大.分析其原因在于,沟槽结构增大沾湿面积的同时,显著提升了通气状态下超疏水表面气膜层的稳定性,因而展示出与超疏水表面和沟槽表面均不相同的减阻规律,且效果更佳.  相似文献   
4.
黄桥高  潘光  宋保维 《物理学报》2014,63(5):54701-054701
采用格子Boltzmann方法研究了固体壁面对流体的作用强度与其润湿性的关系,在此基础上进一步模拟了疏水表面微通道内的流体流动,获得了润湿性对疏水表面滑移流动及减阻特性的影响规律,证实了疏水表面表观滑移的存在性并揭示了其产生机理.结果表明,疏水性作用在疏水表面的近壁区诱导了一个低密度层,而表观滑移则发生在低密度层上.表观滑移是疏水表面具有减阻作用的直接原因,减阻效果随滑移长度的增大而增大.对于特定的流体系统,滑移长度是疏水表面的固有属性,仅是壁面润湿性的单一函数,而与流动本身的性质无关.  相似文献   
5.
为了得到壁面温度在不同来流速度、不同湍流强度条件下对边界层转捩与减阻的影响规律,本文采用Transitionk-kl-ω模型对低来流速度下无压力梯度的光滑平板进行了数值模拟。结果表明,随着来流速度的升高,壁温升高所起到的减阻效果更好,即高来流速度对壁面温度更为敏感。当来流处于中高湍流强度下时,壁温升高能起到推迟转捩的作用,且随着湍流强度的升高,转捩推迟的效果越好,但减阻效果正好相反;当来流处于低湍流强度下时,壁温升高会使得转捩提前发生。壁温升高抑制了边界层内流体的脉动程度,使得层流的稳态不易被破坏,流动更加稳定;同时,壁温升高使得边界层内流体的速度梯度减小,从而降低了壁面摩擦系数,故壁温升高能起到推迟边界层转捩与减阻的作用。  相似文献   
6.
管新蕾  王维  姜楠 《物理学报》2015,64(9):94703-094703
基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.  相似文献   
7.
采用谱方法, 对反向控制下壁面主动变形的槽道湍流进行了直接数值模 拟研究. 结果表明, 在壁面最大变形量小于5倍黏性尺度条件下, 压差阻力可略, 摩擦阻力 降低7.6%. 施加控制后, 湍流强度和雷诺应力受到明显抑制, 平均速度剖面对数区上移. 受壁面法向运动的影响, 条带结构强度减弱、尺度变大; 流向涡外移且强度减弱, 其倾斜和 抬起的角度均有不同程度的减小. 壁面变形呈现流向拉长的凹槽结构, 其平均间距 为90倍黏性尺度.  相似文献   
8.
槽道湍流展向振荡电磁力控制的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
梅栋杰  范宝春  陈耀慧  叶经方 《物理学报》2010,59(12):8335-8342
对槽道湍流的展向振荡电磁力控制进行了实验研究,讨论了展向振荡电磁力对宏观流场、近壁湍流结构以及壁面阻力的影响.采用谱方法进行了数值模拟的对比.数值模拟和实验结果均表明展向振荡电磁力能够使近壁区域的宏观流场产生周期性振荡,并影响壁湍流的条带结构,使其在展向上发生倾斜,从而使壁面阻力减小.  相似文献   
9.
槽道湍流的展向振荡电磁力壁面减阻   总被引:1,自引:0,他引:1       下载免费PDF全文
梅栋杰  范宝春  黄乐萍  董刚 《物理学报》2010,59(10):6786-6792
采用直接数值模拟方法,对槽道湍流的展向振荡电磁力的减阻效果和减阻机理进行了研究,讨论了电磁力强度和振荡频率对湍流猝发事件以及壁面减阻率的影响.结果表明,电磁力强度或振荡频率变化时,湍流猝发频率和猝发强度的变化趋势是相反的,所以存在最优参数使得减阻效果最好.等价壁面展向速度可以很好地描述电磁力强度和振荡频率的变化对减阻效果的综合效应。  相似文献   
10.
近来在壁面湍流高分子减阻研究中,一种拉伸的高分子产生自相一致的等效粘度的理论提了出来,这个等效粘度随离开壁面的距离而增长。本文将此线性分布等效粘度置入Navier-Stokes方程,运用雷诺应力模型计算在壁面湍流中的减阻情况,检验这种等效粘度的可行性。可以发现,此模型可以得到湍流减阻的效果,所得到的减阻率随着等效粘度线...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号