首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   48篇
  国内免费   149篇
化学   192篇
晶体学   13篇
力学   22篇
物理学   71篇
  2023年   8篇
  2022年   13篇
  2021年   15篇
  2020年   6篇
  2019年   14篇
  2018年   8篇
  2017年   12篇
  2016年   12篇
  2015年   13篇
  2014年   21篇
  2013年   34篇
  2012年   22篇
  2011年   22篇
  2010年   12篇
  2009年   22篇
  2008年   19篇
  2007年   10篇
  2006年   11篇
  2005年   14篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
排序方式: 共有298条查询结果,搜索用时 15 毫秒
1.
在μ-PD法纤维蓝宝石单晶生长中,利用Comsol软件数值分析了陶瓷管开裂现象、熔体对流和磁场分布。结果表明,试验中陶瓷管保温层总是在距底部0.03 m处断裂,数值模拟发现该处为温度和Von Mises应力最高点位置,验证了数值模拟的准确性;适当增大陶瓷管保温层厚度有利于降低陶瓷管温度,从而降低其开裂概率;熔体对流中Marangoni对流占主导,浮力对流可忽略;磁场分布能够满足μ-PD法蓝宝石晶体生长需求,"趋肤效应"使最高温度位于铱坩埚最上端。  相似文献   
2.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   
3.
李燕  王匀  刘全坤 《实验力学》2004,19(1):61-66
应用ANSYS有限元分析软件,对受预紧作用的两层扁挤压筒进行了数值模拟。研究了内腔位移分布情况和内孔变形规律,分段对内孔位移做了多项式曲线拟合,并用物理实验加以对比验证。本文还对三层扁挤压筒缝隙度Km对内孔长短轴变形的影响作了分析,拟合出一定条件下内孔位移与Km的多项式插值函数表达式,得出Km的取值范围。为扁挤压筒修模、装配和结构优化提供了依据。  相似文献   
4.
新型精铸热锻模具钢高温磨损性能同其显微组织的相关性   总被引:2,自引:2,他引:2  
研究了经不同热处理条件下的新型精铸热锻模具钢的组织同其高温磨损性能的相关性,对比分析了新型铸钢与H13锻钢的高温磨损性能,并探讨了其磨损机理.结果表明:新型精铸热锻模具钢的高温耐磨性能明显优于锻钢H13;在马氏体、贝氏体和马贝复相3种组织中,贝氏体和马贝复相的高温耐磨性能较好,马氏体相的高温耐磨性能最差;经过400~620℃回火处理的新型精铸热锻模具钢的硬度为42~43HRC,高温耐磨性能较好;当回火温度大于650℃或小于400℃时,新型精铸热锻模具钢的磨损率明显增大,耐磨性显著降低.  相似文献   
5.
6.
由于具有独特的物理与化学性质,银纳米粒子被广泛应用于传感器、电化学、光催化等多个领域.在生物领域,银纳米粒子可以通过释放银离子有效地解决细菌感染问题,但是其本身的毒性不可忽略.为了减小银纳米粒子的潜在毒性,迫切需要寻找一种可持续释放银离子(Ag~+)的新型复合光催化抗菌剂.已有研究报道可将银纳米粒子负载在氧化铝、凝胶和二氧化硅上形成银基抗菌材料,但是大多数材料中银纳米颗粒尺寸较大,分布不均匀,且仅靠快速释放的银离子进行抗菌.本文通过一步溶剂热法制备了ZnO/Ag/rGO三元光催化抗菌剂,其中分别由银纳米粒子和氧化锌(ZnO)形成的银离子和活性氧(ROS)可对大肠杆菌和金黄色葡萄球菌产生协同抗菌作用.负载在还原氧化石墨烯(rGO)上的银纳米粒子持续释放出微量的银离子,后者通过库仑引力牢固地吸附在带负电荷的细菌细胞膜上,从而干扰细菌DNA合成,进而使细菌丧失分裂繁殖能力;与还原氧化石墨烯和银纳米粒子复合的氧化锌可以产生更多的O_2~(·–)和·OH等自由基,具有氧化能力的自由基可分解细菌细胞膜使细菌破裂死亡.银纳米粒子的表面等离子体共振效应不仅可以拓宽氧化锌半导体材料的光吸收范围,而且可以作为电子捕获阱捕获电子,加速光生电子与空穴的分离,有效抑制光生载流子的复合.与其他银基抗菌材料相比,该材料可以实现了30天低浓度银离子持续释放,并利用产生的活性氧和银离子稳定高效地进行抗菌.采用XRD,XPS,SEM,TEM,HRTEM,PL和ESR等表征方法分析了材料的结构、形貌、化学组成、元素价态及光学性质,并通过抑菌圈、最低抑菌浓度(MIC)和最低杀菌浓度(MBC)等性能测试比较了材料的抗菌性能.XRD和XPS结果证明银和氧化锌纳米粒子成功地负载在还原氧化石墨烯上.SEM,TEM和HRTEM分析发现还原氧化石墨烯上的银和氧化锌纳米粒子分布均匀,尺寸较小(5–10 nm).PL和ESR表征表明ZnO/Ag/rGO相比于ZnO/rGO和Ag/rGO有更好的载流子分离和自由基产生能力.因此,ZnO/Ag/rGO材料对大肠杆菌和金黄色葡萄球菌具有更低的最低抑菌浓度(MIC_(E.coli)=100×10~(-6)μg/mL,MIC_(S.aureus)=80×10~(-6)μg/mL)和最低杀菌浓度,该材料在抗菌领域具有潜在的应用前景.  相似文献   
7.
徐紫巍  石常帅  赵光辉  王明渊  刘桂武  乔冠军 《物理学报》2018,67(21):217102-217102
基于密度泛函理论的第一性原理方法,本文计算了单层2H相MoSe2纳米材料表面及两种边缘(Mo原子边缘、Se原子边缘)不同活性位点、不同氢原子吸附率下的氢吸附吉布斯自由能(Gibbs free energy,用△GH0表示),并且将对应的微观结构进行了系统分析比较,得出△GH0最接近于0 eV的吸附位点及相应的吸附率.同时,结合差分电荷密度和电负性理论,分析了单层MoSe2两种边缘氢吸附的电荷转移及成键特性,进一步解释了不同吸附位点呈现的结构与能量趋势.最后,通过基于密度泛函理论的第一性原理分子动力学模拟,研究了高温热运动对两种边缘氢吸附的影响,获得了氢原子发生脱附的临界温度及对应的微观动态过程.该理论研究从原子尺度揭示了单层2H相MoSe2纳米材料边缘不同位点在不同温度下对氢原子吸附和脱附的微观机理,证实了Mo原子边缘的畸变和重构行为,加深了对实验中单层2H相MoSe2边缘在不同温度下氢吸附机理的理解,为实验中通过控制MoSe2边缘设计廉价高效的析氢催化剂提供理论参考.  相似文献   
8.
Fe-Ni基高温自润滑复合材料摩擦磨损特性研究   总被引:2,自引:2,他引:0  
本文中采用滑动磨损试验方法研究了以PbO和WS2为润滑组元的复合材料与440C不锈钢配副在25~600℃温度范围内的摩擦磨损特性.通过X射线衍射仪分析发现复合材料中含有铬的硫化物等高温润滑物质生成.使用扫描电镜和金相显微镜进一步分析了材料摩擦表面形貌.结果表明:在500 ~ 600℃范围内,PbWO4、CrxSx+1等各种金属化合物在摩擦表面形成了较完整的润滑膜,产生了自润滑能力,具有优良的减摩耐磨性能.润滑膜材料可向摩擦对偶表面转移,在一定程度上阻止了复合材料与440C不锈钢对摩材料的直接接触,显著降低了材料摩擦系数和磨损率,实现了高温自润滑性能.本文进一步探索了单一润滑组元润滑膜和两种润滑组元润滑膜的承载能力,发现两种固体润滑组元产生的协同润滑效应显著改善了润滑膜的润滑性能.  相似文献   
9.
以N-甲基-2-吡咯烷酮和3-氯丙基三甲氧基硅烷单体为原料,利用SN2亲核取代反应合成具有一定表面活性的功能化离子液体N-(三甲氧硅丙基)-N-甲基-2-吡咯烷酮盐酸盐.通过元素分析、红外光谱和核磁共振对功能化离子液体进行表征,并测定了其表面张力和导电率.结果表明,合成的产物结构与其理论结构基本一致,具有较宽的液体温度范围和较低的表面张力,并具有较高的电导率,随着温度的升高,电导率逐渐增高.  相似文献   
10.
以4,6-二氯-5-氨基嘧啶为原料,经N-烃基化反应、缩合反应和氯化反应,合成了一系列未见文献报道的6-氯-8-烃基-9-芳基嘌呤衍生物,所有化合物均通过1H NMR、MS和元素分析确定其结构。 研究结果表明,N-烃基化反应时,芳胺使用盐酸作催化剂,芳基脂肪胺用有机碱三乙胺作催化剂,缩合反应时,多聚磷酸(PPA)用量过多会影响传质效果,影响反应的收率。 讨论了微波反应方式对氯化反应的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号