首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  国内免费   48篇
化学   58篇
晶体学   2篇
物理学   14篇
  2023年   7篇
  2022年   13篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2016年   4篇
  2014年   14篇
  2013年   13篇
  2012年   11篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
最近的理论研究筛选出CuCs掺杂Ag基催化剂是一种高效的乙烯环氧化催化剂[ACS Catal. 11,3371 (2021)]. 然而,该工作是基于研究表面建模预测Ag基催化剂的性能,在实际反应过程中,Ag基催化剂是颗粒状的. 本文结合密度函数理论、Wulff构造理论和微观动力学分析来研究Ag基催化剂在颗粒模型上的催化性能. 研究表明,CuCs掺杂Ag基催化剂在选择性和活性方面都优于纯Ag基催化剂,这一点通过实验得到了证明. 进一步地表征分析发现,CuCs掺杂能促进颗粒的生长以及颗粒的分散,从而形成富含晶界的Ag颗粒. 此外,CuCs促进了催化剂表面亲电氧的形成,这均有利于环氧乙烷的形成和解吸. 本工作为理论与实验相结合的催化剂设计提供了一个案例研究.  相似文献   
2.
聚3-己基噻吩(P3HT)以其合成工艺简单、成本低廉的优势,成为有机光伏领域中最具吸引力的电子给体材料之一。然而,目前P3HT: 非富勒烯太阳能电池的光伏性能仍然较差。在本工作中,我们证明了与P3HT: 富勒烯太阳能电池相比,较快的电荷转移态的非辐射衰减速率(Knr)是导致P3HT: 非富勒烯太阳能电池中较低的量子效率和较高的电压损失的原因。然后,我们研究了基于非富勒烯受体ZY-4Cl的太阳能电池的工作机理。研究结果表明与P3HT: 非富勒烯体系相比,P3HT: ZY-4Cl中Knr的降低改善了器件的量子效率,同时降低了电压损失。Knr降低的原因可以部分归因于电荷转移态能量的增加。此外,给体分子和受体分子之间的距离(DA间距)的增大也是Knr减少的重要原因。因此,我们得出结论:为了提高P3HT太阳能电池的性能,需进一步降低器件的Knr,这可通过增加活性层中的DA间距来实现。  相似文献   
3.
王涛  陈建峰  乐园 《物理学报》2014,(20):297-303
利用基于密度泛函理论的第一性原理研究了I掺杂金红石Ti O2(110)表面的形成能和电子结构,分析了不同掺杂位置的结构对Ti O2光催化性能的影响.计算表明,氧化环境下I最容易替代掺杂表面五配位的Ti,而还原环境下最容易替代掺杂表面的桥位氧.I替位Ti或I替位O都能降低禁带宽度,可能使Ti O2吸收带出现红移现象或产生在可见光区的吸收,其中I替位桥位氧的禁带宽度最小.吸收光谱表明,I掺杂不仅能提高Ti O2可见光响应,同时可增加紫外光的吸收能量,提高其可见光及紫外光下的光催化性能.  相似文献   
4.
近年来,大气中CO2的浓度不断增加,带来全球变暖等一系列严重后果,成为国际社会共同关注的环境问题.将CO2催化转化为高附加值化学品可有效降低其向大气中的排放,同时可实现其资源化利用,符合低碳社会的发展目标.目前,已有多种催化体系实现了CO2向不同化学品的转化.然而,由于CO2自身的热力学稳定性和动力学惰性,这些转化通常需要在苛刻的反应条件和较高能耗下进行.设计开发高效催化体系、实现温和条件下CO2的转化利用引起了工业界和学术界的广泛兴趣.金属有机骨架材料(MOFs)是一类由有机配体和金属中心通过配位键组装而成的有机-无机杂化材料,在很多方面展现出良好的应用性能.由于其结构的多样性、可设计性、高比表面积和多孔性等独特性质,MOFs在催化领域吸引了很多研究者的关注.其中,MOFs作为非均相催化剂在CO2热催化转化中表现出良好的应用前景,已实现多种CO2向高值化学品的转化路径.但这些催化体系也存在一些缺点,如有些MOFs材料在催化反应中稳定性差以及其微孔性对反应中的传质造成限制等.因此,设计稳定的MOFs和MOF-基材料并对其结构进行优化改性,从而在温和条件下实现高效的CO2转化具有重要意义.本文综述了提高MOFs在CO2热催化转化反应中性能的几种策略:(1)对MOFs结构中的配体进行设计,包括具有活性官能团的配体、活性配合物作为配体和引入混合配体设计多元MOF;(2)调节MOFs结构中的金属中心,设计混合金属中心和包含活性金属团簇的金属中心;(3)构筑多级孔MOFs;(4)设计MOF-基的复合材料,包括MOFs作为载体与金属纳米颗粒、活性配合物和聚合物构建复合材料;(5)利用MOFs作为前驱体制备MOF-基衍生物材料,重点阐述了如何增加MOFs作为非均相催化剂的催化活性位点以及在CO2转化反应中各位点之间的协同作用.此外,介绍了原位表征技术在MOF-基材料用于CO2固定和转化中的应用.最后,分析了MOF-基非均相催化材料在CO2热催化转化领域目前面临的问题和挑战,包括MOFs材料结构优化、催化机理研究和规模化制备等方面,并对未来的发展趋势进行了展望.  相似文献   
5.
通过溶胶-凝胶法合成了一系列Mn掺杂K-Co-Mo催化剂,并利用X射线衍射、N2吸脱附、NH3程序升温脱附、原位漫反射红外光谱以及X射线吸收谱等技术对催化剂的结构进行了表征.活性测试结果显示Mn掺杂催化剂比未掺杂催化剂表现更高的合成低碳醇的催化活性,尤其是C2+醇的选择性得到了明显的提高.醇产物分布偏离了ASF分布规律,甲醇的含量显著减少,乙醇成为主要醇产物.表征结果表明Mn助剂的加入增强了Co和Mo之间的相互作用,促进了醇生成活性中心Co-Mo-O物种的生成.显著减少了催化剂强酸性位的数量,促进了弱酸性位的产生,有利于醇产物的生成.助剂的加入有利于催化剂对CO的线性和桥式吸附,促进了醇产物的生成和碳链的增长,提高了催化剂对C2+醇的选择性.  相似文献   
6.
碳纤维的微晶结构是影响其性能的决定性因素,本论文采用广角X-射线衍射法研究了聚丙烯腈预氧纤维在碳化阶段中微晶结构的形成、生长与转变过程。研究结果表明:在1000℃以下,经预氧化反应形成的不连续多环芳香平面结构沿平行于纤维轴的方向堆积并逐渐靠近,形成类似于晶核的微晶结构生长中心,表现为类石墨片层间距的减小而晶粒增长缓慢;当温度高于1000℃时,晶粒的生长速度明显加快,形成三维有序的微晶结构;在温度高于1500℃的石墨化阶段,类石墨微晶结构进行重排,晶粒尺寸迅速增加。根据这一规律,可以通过控制晶核生成和晶粒生长速度的匹配,进行碳纤维的结构设计和调控。  相似文献   
7.
以乙二醇为还原剂,通过微波热辐射制备得到稳定的Pt/Ru双金属胶体纳米簇,各颗粒粒径在1~2 nm范围。考察了聚合物聚乙烯吡咯烷酮(PVP)对Pt/Ru双金属纳米簇表面原子组成及催化性能的影响。结果表明,PVP与金属前体之间的不同相互作用影响Pt/Ru双金属纳米簇的形成。在Pt/Ru双金属纳米簇形成之前加入PVP,Pt原子更容易富集在双金属表面,有利于增加Pt在催化反应中的作用。在PVP稳定的Pt/Ru双金属纳米簇中,除了零价态的Pt、Ru单质外,还存在氧化态的Pt化合物,归因于PVP与Pt前体的相互作用。在环己烯加氢反应中,PVP-Pt/Ru双金属纳米簇显示出比单金属纳米簇更优越的催化性能。  相似文献   
8.
采用高分子辅助的浸渍还原法,制备得到膨胀石墨(EG)负载的纳米钯催化剂(Pd-EG),采用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等手段对催化剂组成、结构、形貌和价态进行了表征,并考察了Pd-EG催化剂在六价铬还原反应中的活性.结果表明,催化剂中纳米钯颗粒均匀分散在膨胀石墨上,平均粒径为4.37 nm,金属负载量质量分数为0.446%.该催化剂对六价铬还原反应具有良好的催化性能,可将六价铬完全转化为三价铬,在pH=4.0及45℃条件下反应转化频率(TOF)达到3186 h-1;催化剂经过多次重复使用后的活性仍保持稳定.  相似文献   
9.
通过添加对映体拆分剂,合成了4种含膦手性的丙炔胺磷酸酯单体[HC帒CC H2NH(PO)R1R2].单体1,R1=OPh,R2=NC4H7COOCH3;单体2,R1=OPh,R2=NC4H7COOCH2CH3;单体3,R1=OPh,R2=NC4H7-COOC(CH3)3;单体4,R1=Ph,R2=NC4H7COOC(CH3)3].1H-NMR和31P-NMR表征可知对映体(单体1)不能被拆分剂拆分,而单体2、单体3、单体4通过拆分剂可以制得单一手性的磷化合物.以(nbd)Rh+[η6-C6H5B--(C6H5)3]为催化剂,以三氯甲烷为溶剂成功得到聚合物分子量范围在0.4×10-4~0.7×10-4,分子量分布在1.26~1.98范围的3种含手性膦侧基的丙炔胺类聚合物.比旋光度([α]D)、圆二色谱(CD)对聚合物的不同侧基及温度对光学活性的影响表明,聚合物具有良好的光学活性且能够形成单一方向的螺旋构象,说明膦手性在构建螺旋聚合物具有重要作用.  相似文献   
10.
纳米颗粒分散是无机纳米材料在有机体系中应用的关键.本文提出了采用纳米颗粒液相分散体制备高度分散纳米透明有机无机复合材料的新方法,发明了超重力反应-萃取相转移方法制备纳米颗粒液相透明分散体技术,介绍了其制备原理和实施效果,以及其在纳米复合节能膜、纳米润滑油脂和高固含量光学材料等有机无机纳米复合材料中的最新研究进展.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号