首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   4篇
  国内免费   233篇
化学   352篇
晶体学   4篇
数学   1篇
物理学   52篇
  2023年   17篇
  2022年   19篇
  2021年   14篇
  2020年   8篇
  2019年   20篇
  2018年   19篇
  2017年   13篇
  2016年   13篇
  2015年   13篇
  2014年   42篇
  2013年   19篇
  2012年   48篇
  2011年   36篇
  2010年   51篇
  2009年   36篇
  2008年   21篇
  2006年   12篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
1.
梅隽彦 《广州化学》2020,45(2):64-75
从细胞穿膜肽(CPP)的分类、内化机制、与货物的连接和应用四个方面讲述目前人们在对细胞穿膜肽的研究上已经取得的成果。细胞穿膜肽是一种能穿过细胞膜的短肽,可分为阳离子型肽、两亲性肽和疏水性肽。细胞穿膜肽的内化机制主要有内吞作用、直接渗透、依赖于糖蛋白的内化机制和依赖于浓度的内化机制等。近年来,人们合成了多种有实际应用价值的CPP-货物复合物,在细胞穿膜肽的应用上,取得了很多进展和突破。科学家们主要研究将细胞穿膜肽应用于药物递送和细胞成像。  相似文献   
2.
陈凤娟  刘罗  张子露  曾伟 《有机化学》2023,(10):3454-3469
硅杂化合物广泛存在于药物分子和具有特殊用途的功能材料中.与其同主族的全碳母体化合物相比,通常硅元素的存在赋予了相应的硅杂化合物特殊的生物活性和独特的物理化学性能.概述了近年来可见光催化有机硅的合成方法和策略,并对其反应机理和局限性予以分析和讨论.  相似文献   
3.
2011年张涛院士等首次提出单原子催化剂(SACs)的概念,随后SACs迅速成为催化领域的一个研究热点.由于催化活性位点的原子级分散和载体的固定作用, SACs兼具了均相催化剂(单活性中心和高选择性)和多相催化剂(结构稳定和易回收重复使用)的优点.此外, SACs上原子级分散的金属活性位点更容易通过鲍林模式来吸附氧分子,有效提高了双电子氧还原反应的选择性,并且能够在相同的金属负载量下提供更多的活性位点,降低了应用成本.这些特点使得SACs在光催化和电催化产过氧化氢领域展现出较大优势,但同时SACs过高的表面自由能也使得其金属负载量较低且稳定性差,这些问题还需通过进一步研究进行改善.本综述简要介绍了光催化和电催化产过氧化氢的基本原理,详述了SACs在该领域中的独特优势.概述了密度泛函理论(DFT)计算在SACs产过氧化氢研究中发挥的重要作用, DFT计算不仅能够高效方便地筛选出具有应用潜力的金属单原子,从而有效减少实验工作量,而且能揭示催化过程中的潜在活性位点,并结合原位表征为SACs产过氧化氢催化机理解释提供有力证据,这对合成高性能的SACs具有重要的指导意义.总结了近期基于贵金属(P...  相似文献   
4.
加氢是现代化工产业中的一类主干反应,广泛应用于精细化学品、药物、食品、染料、功能聚合物及香料等制造产业中.高效催化剂的引入使得加氢反应能够在相对温和的条件下还原各类不饱和化合物.金属催化剂在加氢反应中活性高,所需的反应温度较低,适用性广,但是容易和S,N,As和P等元素结合而"中毒"失去反应活性.金属氧化物催化剂和金属硫化物催化剂具有一定的抗毒性,但活性相对较差,通常需要采用高温高压的反应条件,对催化剂本身和反应器的要求较为苛刻.传统催化剂在反应中具有一定的局限性,所以亟需开发新一代高效的加氢催化剂,在保证高活性和高选择性催化效果的同时,降低对能源的消耗和对环境的负面影响.金属有机骨架(MOFs)作为一种新型的多孔材料在过去二十年中受到相当大的关注,并在催化、气体存储和分离、传感器、发光材料和药物输送等众多领域的应用中表现出卓越的性能.利用MOF材料良好的相容性,将MOF和其它功能材料结合形成新的复合材料可以在更大程度上扩大MOF材料的应用领域.与传统的催化剂相比,MOF基材料具有优异的物理化学特性和结构可调性,通过合理的设计能够满足不同的催化加氢过程:(1)MOF基催化剂具有多样且特异性的活性位点.除了组成MOF材料的金属离子/簇和功能有机配体之外,MOF材料可通过封装其他活性物质或者被活性物质包裹等方式引入其他类型的催化位点,进一步扩大MOF基催化剂在不同催化加氢中的适应性.此外,不同的活性位点之间的协同作用又能特异性地促进反应的进行,对提高反应的选择性起到重要的作用.(2)活性位点的尺寸大小和空间分布可以被有效控制.这能影响到催化剂在催化反应过程中的活性和选择性,并且通过MOF材料的限域效应,同时能增强活性位点的稳定性和耐久性.(3)高比表面积能提高MOF基催化剂的催化活性.这种结构特性不仅可以增加MOF基催化剂的活性位点,而且能够吸附反应物和还原剂达到扩大其局部浓度的效果.(4)反应分子的扩散可通过调节MOF基催化剂的结构实现控制.通过调整MOF材料的孔窗口和通道的尺寸,能够改变反应物在催化剂内部的扩散途径,影响底物和活性位点的接触,能进一步影响反应的活性和选择性.本文总结了近几年来MOF基材料在不同的催化加氢反应中的应用,其中包括烯烃、炔烃、芳硝基化合物、肉桂醛、糠醛和苯等化合物的加氢反应.首先介绍了MOF基材料中不同类型的活性位点,除了MOF材料自身的金属离子/簇和功能有机配体外,MOF基复合材料中的金属纳米颗粒?金属硫化物?金属氧化物?均相催化剂等活性位点可以通过封装或包裹的方式引入.在不同加氢反应中,着重介绍了MOF基催化剂中不同类型活性位点的加氢过程中的催化方式、催化剂本身的结构优化及催化剂与反应底物之间的相互作用,以及这些因素之间的协同作用对反应活性和选择性的影响.最后,讨论了MOF基材料在加氢反应中应用存在的问题以及未来发展展望.  相似文献   
5.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,p型半导体氧化亚铜(Cu2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu2O光转换效率远远低于此值;同时,纯Cu2O在光照条件下的稳定性较差.研究表明,Cu2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu2O和能带匹配的石墨相氮化碳(g-C3N4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu2O/g-C3N4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu2O薄膜,采用溶胶凝胶法制备g-C3N4纳米颗粒材料,然后采用电化学法在Cu2O薄膜表面沉积一层g-C3N4纳米颗粒,得到了Cu2O/g-C3N4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu2O/g-C3N4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu2O/g-C3N4异质结材料,SEM图表明g-C3N4纳米颗粒在Cu2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu2O和g-C3N4薄膜材料有极大提高.当在Cu2O表面沉积g-C3N4的时间为15 s时,得到样品Cu2O/g-C3N4-15异质结膜,其在–0.4 V和可见光照射条件下,光电流密度达到了–1.38 mA/cm2,分别是纯Cu2O和g-C3N4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h–1 cm–2,且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu2O/g-C3N4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu2O和g-C3N4两个半导体相互起到了协同作用.机理分析表明,Cu2O/g-C3N4异质结薄膜在光照下,由于两者能带匹配,Cu2O的光生电子从其导带转移到g-C3N4的导带上,g-C3N4价带上的空隙转移到Cu2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C3N4的导带位置高于H2O(或H+)还原为H2的电势,Cu2O的价带位置低于H2O(或OH–)还原为O2的电势,所以在外加–0.4 V偏压和可见光照射条件下,Cu2O/g-C3N4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu2O薄膜上沉积g-C3N4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   
6.
蒋军生  韦何磊  谭爱东  司锐  张伟德  余宇翔 《催化学报》2021,42(5):753-761,中插1-中插4
单原子催化剂凭借其超高的原子利用率及在某些反应中表现出的出色催化效果,被认为是最有前途的电催化剂之一,引起了研究人员的极大热情和兴趣.制备高金属含量的单原子催化剂是基础研究和实际应用的前提和关键.然而,由于原子表面自由能随着尺寸的减小而急剧增加,在制备和催化过程中,单原子催化剂的金属原子很容易聚集成团簇甚至颗粒,因此如何制备高负载量的单原子催化剂仍然是一个不小的挑战.在众多单原子催化剂中,非贵金属中铁基单原子被认为是燃料电池中的Pt催化剂的有效替代品.在燃料电池的核心反应–电化学氧还原反应中,Fe-Nx被证明是铁单原子催化剂中的主要活性中心.因此,为了获得更好的氧还原性能,提高铁单原子催化剂中Fe-Nx的含量就显得非常关键.前期已报道了一些关于制备高Fe含量的铁单原子催化剂材料的策略,例如空间限域策略和配位合成策略.其中卟啉和葡萄糖作为配位剂,双氰胺和三聚氰胺可热解成氮掺杂碳材料以捕获金属原子,形成M-Nx.同时,具有高比表面积的富氧碳载体可以通过掺杂氮来作为固定金属原子的位点.我们开发了一种简单直接的方法,通过碳辅助金属配合物热解法制备高金属含量的Fe-N4单原子催化剂,即在最佳碳化温度800℃、三聚氰胺存在下对氮掺杂多孔碳辅助分散铁邻苯二胺配合物进行热解.在该方法中,氮掺杂多孔碳是一种具有丰富氮缺陷,高表面积(1267 m2?g–1)和良好分散性的多孔生物质碳材料.邻苯二胺作为含两个氨基的二齿配体,可以很容易地与过渡金属配位,形成稳定的平面四配位络合物.此外,由于在高温条件下过渡金属的催化作用,邻苯二胺也被用作氮掺杂碳的前体.因此,氮掺杂多孔碳和邻苯二胺是合成高金属含量铁单原子催化剂的关键前驱体.通过X射线光电子能谱,大角度环形暗场扫描透射电子显微镜和X射线吸收精细结构光谱表征,发现所制备的铁单原子催化剂中铁原子以单个原子的形式锚固在碳载体上,并与碳基质的四个掺杂氮原子配位,得到Fe-N4的构型.通过调节Fe前驱体量,铁单原子催化剂中Fe的最高负载量达到7.5 wt%,在目前已经报道的铁单原子催化剂中排第四.电化学氧还原测试表明,在0.10 M KOH溶液中,随着铁含量的增加,铁单原子催化剂的氧还原性能逐渐提高.其中250Fe-SA/NPC-800样品表现出最高起始电位0.97 V和最正的半波电位0.85 V,可与市售的40%Pt/C催化剂相媲美.和已报道的铁单原子催化剂相比,由于我们制得的催化剂的比表面积较低,只有247 m2?g–1,所以制约了催化剂的性能.在混合动力学势域中,根据Koutecky-Levich方程计算得出的电子转移数约为3.6,表明250Fe-SA/NPC-800主要催化四电子转移过程,这可以归因于以Fe-N4活性中心降低了四电子过程中关键中间体的形成能垒及过程的自由能变化.此外,250Fe-SA/NPC-800展现了较高的电化学稳定性.连续工作6 h后,250Fe-SA/NPC-800保留了超过87%的电流密度,而Pt/C表现出明显的衰减,仅保留了49%.  相似文献   
7.
探索高效、经济的非金属氧还原(ORR)电催化剂已成为电化学能源体系的关键.科学界最具挑战性的目标之一是通过合理地验证和精确地调节活性位点来设计结构明确、性能优异的催化剂材料.本文提出一种精确和可控的串联协同作用的活性位点策略,以提高MFCOFs的ORR催化活性.以亚胺-N、噻吩-S和三嗪-N等作为结构单元,通过精确的串联策略合成了三种MFCOFs,分别为亚胺-N构建的TFPB-TAPB-COF、亚胺-N和噻吩-S构建的BTT-TAPB-COF以及亚胺-N、噻吩-S和三嗪-N三种活性中心构建的BTT-TAT-COF.将三种MFCOFs置于超临界二氧化碳中活化处理后,采用傅里叶变换红外光谱仪、X射线衍射、交叉极化结合魔角旋转技术13C核磁共振法和热重分析法、氮气吸脱附曲线等表征手段对其进行了测试,并在含有0.1 M KOH的电解液中测试其ORR催化活性.结果表明,与BTT-TAPB-COF相比,BTT-TAT-COF展现出更优异的ORR催化性能;而BTT-TAPB-COF的催化性能优于TFPB-TAPB-COF.具体表现为,BTT-TAT-COF的半波电位(0.77 V)和起始电位(0.87 V)均高于BTT-TAPB-COF(0.71 V,0.80 V)和TFPB-TAPB-COF(0.65,0.73 V).此外,BTT-TAT-COF表现出较低的塔菲尔斜率和接近于4电子的ORR过程,说明其具有较高的反应速率.DFT计算结果表明,在费米能级附近,BTT-TAPB-COF比TFPB-TAPB-COF具有更窄的带隙,而BTT-TAT-COF具有最窄的带隙.因此,与TFPB-TAPB-COF和BTT-TAPB-COF相比,BTT-TAT-COF可以更有效地激发电子转移,增强ORR活性.此外,利用三种结构的吉布斯自由能图分析了ORR的过电位.结果表明,当亚胺-N、噻吩-S和三嗪-N结构被引入骨架后,相同位点的过电势降低.由此可见,亚胺-N、噻吩-S和三嗪-N作为催化活性位点诱导了正的ORR过程.此外,BTT-TAT-COF中部分碳原子(BTT-TAT-5,9,10)的过电势均低于BTT-TAPB-COF和TFPB-TAPB-COF中所有位点的过电势,表明多活性位点发挥了协同催化的作用.本文证明了精确串联协同催化的多活性位点策略提高ORR性能的可行性,并为构建高效的COF基非金属ORR催化剂提供新的见解.  相似文献   
8.
木质素是一种天然芳香族聚合物,约占木质纤维素的30%,是唯一通过裂解C―O醚键和C―C键生产芳香族化学品或液体燃料的可再生芳香族资源。迄今为止,对木质素氢解制备有价值化合物的研究主要集中在相对不稳定的C―O键的裂解上,这限制了木质素氢解的效率。采用水热法和湿浸渍法制备了多功能Pt/NbPWO催化剂。通过破坏碱木质素中的C―O键和C―C键,可以得到产率为18.02%的芳香族单体。该反应不仅可以断裂木质素聚合物中醚键,同时也可以断裂部分关键的C―C键。其氢解机理可能是丰富的Brønsted酸和Lewis酸位点参与了C―C的活化。此外,重点分析载体和Pt物种在Pt/NbPWO催化剂中的协同作用。  相似文献   
9.
富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性   总被引:1,自引:1,他引:0  
王洪  张伟德 《应用化学》2013,30(6):705-709
用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆。采用XRD、SEM和电化学测试等方法对样品进行表征。结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号