首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   3篇
化学   4篇
  2020年   2篇
  2019年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 296 毫秒
1
1.
本文研究了在LiFSI-(PC)3高浓度电解液中添加剂对于纳米硅材料的循环性能的影响,采用扫描电子显微镜、傅里叶变换红外光谱和X-射线光电子能谱分析了循环过程纳米硅材料及其电极的结构和表面SEI膜演化的特征. 结果表明,添加剂能够改善纳米硅材料的循环性能,在LiFSI-(PC)3高浓度电解液中循环300周材料比容量为574.8 mAh·g-1,而含有3%LiDFOB、3%FEC、3%TMSB的添加剂的高浓度电解液中,比容量分别为1142.9、1863.6和1852.2 mAh·g-1. 作者分析认为,在LiFSI-(PC)3浓溶液中LiFSI优先于PC在纳米硅表面发生成膜反应,形成的SEI膜由以无机物主导的内层膜和以有机物主导的外层膜组成,而在含添加剂的高浓度电解液中,添加剂和LiFSI协同参与SEI成膜反应,形成的内层膜能够减缓PC溶剂参与外层的成膜反应,由此形成的SEI膜能够抑制循环过程中SEI膜的过度生长,更好地抑制了纳米硅的粉化,纳米硅材料及其电极结构稳定性更好,材料表现出更好的循环性能.  相似文献   
2.
制备了正极中只含有一种导电剂(KS-6或Super-P)的锂离子电池,比较了它们的倍率放电性能并对放电过程进行了模拟。以Super-P为正极导电剂的电池15C放电容量为1C容量的84.3%,以KS-6为正极导电剂的电池15C放电容量为1C容量的21.8%,前者的倍率放电性能明显优于后者。数学模拟结果显示,以KS-6为导电剂的正极的Bruggeman系数为3.1,以Super-P为导电剂的正极的Bruggeman系数为2.76,前者明显大于后者,认为这是由于KS-6的片状形貌使其容易相互平行排列造成的。大电流放电时,以KS-6为导电剂的正极中出现了电解质耗竭而导致该区域内电化学反应停止的现象,从而导致电池放电容量急剧降低。  相似文献   
3.
李钊  王忠  班丽卿  王建涛  卢世刚 《化学学报》2019,77(11):1115-1128
随着电动汽车和储能电站等电力设备的快速发展,对高能量密度的锂离子电池的需求日益增加.高比容量(>250 mAh·g-1)的富锂锰基正极材料,有望成为锂离子电池实现高比能量(>350 Wh·kg-1)的关键正极材料.富锂锰基正极材料的Li2MnO3相和晶格氧参与电化学反应使其拥有了高容量,但这也导致表面结构和成分容易发生变化,进而造成富锂锰基正极材料存在着诸如首次库伦效率低、倍率性能差和循环后电压和容量衰减严重等问题.因此,本文综述了富锂锰基正极材料的表面包覆、表面掺杂和表面化学处理三种表面改性方法,并进一步讨论了三种表面改性方法对材料性能提升的机制机理和优缺点.在此基础上,介绍了近些年基于多方法的表面联合改性工作.通过对富锂锰基正极材料进行表面联合改性,不仅可以改善其结构稳定性和抑制电极/电解液界面副反应,而且可以缓解其在循环过程中不断发生的结构转变和晶格氧的析出问题.最后,对富锂锰基正极材料表面改性研究方向进行了总结和展望.  相似文献   
4.
随着低比容量硅碳复合材料(<500 mAh/g)在锂离子电池中的商业化应用,硅基负极材料也从实验室研究走向了产业化发展。近年来的研究工作中,许多方法被用来解决硅在循环过程中体积变化(>300%)所带来的一系列问题。在材料结构方面,从最初的硅材料纳米化、硅与其他材料复合等技术手段转变到了硅碳复合材料二次颗粒的结构设计、表面包覆层设计等方法;在应用性能方面,除了早期文献报道的材料比容量、循环性能等参数外,还增加了材料比表面积、振实密度、首次及循环库仑效率等更符合电池实际应用要求的性能参数研究,从而极大地推动了硅基负极材料的商业化应用进程。本文首先综述了近年来硅碳复合材料组成、结构设计的发展脉络,进一步分析了由石墨、软碳、硬碳、碳纤维和石墨烯等碳源合成的硅碳复合材料的结构特点,并对其电化学性能进行分析对比,总结了碳在硅碳复合材料结构及其性能上发挥的作用。最后,对硅碳复合材料制备过程中的结构设计要求和碳材料的选择进行了分析和展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号