首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
化学   5篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 78 毫秒
1
1.
多酸具有组成、结构和尺寸易于调控的优点以及良好的电子储存和氧化还原能力,在催化、光电、磁等领域具有广阔的应用前景。特别是在催化领域,更是受到化学家们的青睐。多酸在催化反应过程中易团聚而导致失活,且比表面积较低,而将其引入到结构明确、多孔的框架材料中则能较好地解决以上问题。因此,该类材料已成为多酸化学领域的研究热点之一。本文按照多酸基主客体框架材料的合成方法,即原位合成法、浸渍合成法和机械研磨合成法来进行分类,并分别讨论了其优缺点。并进一步总结了该类材料在催化、染料吸附降解、质子传导以及光电传感等领域的性能和应用,并对其未来发展趋势进行了展望。  相似文献   
2.
金属有机骨架材料(MOFs)有着有序的孔道、丰富的结构及功能多样性,在气体分离、储存、催化和传感等方面具有潜在的应用前景,受到科学界的广泛关注。但是MOF晶体具有脆性,容易碎裂,不溶于溶剂,而且不能像高分子一样熔融后热塑成型,常用的压片加工方法得到的样品仍然较易粉化。这些性质极大地制约了MOFs在工业领域的发展和应用。在此,我们向传统的高分子材料学习,把MOFs加工成薄膜、纤维等,并发展了原位聚合法、光引发合成后聚合法、热压组装法、静电纺丝法等一系列方法。从微观结构的设计着手来研究膜的结构与性质的关系,通过不同的方法赋予MOF膜在电化学、分离、检测和安全防护等方面独特的功能和性质,并进一步探索其工业化生产的方法和可能性。  相似文献   
3.
为了寻找兼具优异爆轰性能和良好热力学及动力学稳定性的高能材料, 本文设计了15个硝基尿酸化合物, 运用密度泛函理论, 对其性质进行了研究. 通过半经验的K-J方程和比冲量预测了其爆炸性能, 结果表明, 所设计分子的爆热、 分子密度、 爆炸速率和爆炸压强同硝基取代基数目之间存在较强的线性关系. 三硝基尿酸和四硝基尿酸衍生物的爆炸速率超过了8.0 km/s, 爆炸压强超过了30 GPa, 并且大多数衍生物的比冲量要高于目前经常使用的炸药黑索金. 通过计算N—NO2键的解离能、 特征落高、 分子的自由空间预判了衍生物的稳定性和撞击感度, 结果显示, 绝大多数分子有大于80 kJ/mol的键解离能. 本文的理论结果可以为实验上设计合成新的高能材料提供一些有用的信息.  相似文献   
4.
董璐  郑春英  周培  施如菲  李晖 《化学学报》2014,72(9):981-1000
主族金属配合物的研究是配位化学的重要主题之一. 相对于过渡金属和稀土金属配合物而言, 主族金属配合物的研究比较薄弱, 其主要原因在于: 主族金属的闭壳层电子层结构、有限的价电子数和较少的氧化态等特点, 使得主族金属与有机配体的相互作用较弱, 作用模式较为单一. 但近年来, 随着合成技术与分析检测技术的不断提升, 具有新颖结构并具有与过渡金属配合物相似的优良性能的主族金属配合物也不断地进入了人们的视野. 作为生物体的基本结构单元的氨基酸是一类良好的功能配体, 主族金属氨基酸配合物的研究具有重要的学术价值和应用价值, 也是化学、生物、医药和材料等众多学科领域中的共同的基本问题. 解决基本问题的一个切入点可能是研究这些新型主族金属氨基酸配合物的分子结构与物质结构. 因此, 本工作基于2000年以后发表的主族金属氨基酸配合物的晶体结构, 从X射线晶体学的研究视角, 分析了新型的主族金属氨基酸配合物的结构多样性, 包括当前热门的MOF类的结构; 综述了主族金属氨基酸配合物的研究进展; 展望了未来这一领域的发展方向; 提出了以功能为导向系统地开展主族金属氨基酸的配位化学和超分子化学的研究思路. 谨以此文献给2014年国际晶体学年.  相似文献   
5.
石墨烯基纤维电容器的可控制备及应用   总被引:1,自引:1,他引:0  
聂肖威  陈南  李静  曲良体 《应用化学》2016,33(11):1234-1244
超级电容器又名电化学电容器,是一种绿色储能器件。 超级电容器的研究,从根本上讲是寻找比表面积大且可以被充分利用的电极材料。 石墨烯作为sp2杂化碳质材料的基元单位,具有独特的二维结构和优异的物化特性,使得其在超级电容器领域具有巨大的应用潜力,其中石墨烯纤维超级电容器受到了研究工作者越来越广泛的关注。 本文通过对一维石墨烯纤维的自组装以及与制备材料的共组装来作为超级电容器的电极材料,对其可控制备进行了系统的归纳和总结,可控构建独特的电极材料,使其性能得以优化,组装出高性能的超级电容器,并对相关领域的发展趋势做了展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号