首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   1篇
化学   32篇
晶体学   1篇
力学   5篇
数学   3篇
物理学   5篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1988年   1篇
  1986年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
排序方式: 共有46条查询结果,搜索用时 16 毫秒
1.
Journal of Thermal Analysis and Calorimetry - The present investigation concentrates on the hydrothermal features of both hybrid nanofluid and usual nanofluid flow over a slippery permeable bent...  相似文献   
2.
A new complex [Cu(L1)(NCS)]SCN, where L1 = 3,14-dimethyl-2,6,13,17-tetraazatricyclo( 16.4.0.07,12)docosane is prepared and characterized by single crystal X-ray crystallographic analysis. The complex crystallizes in the triclinic space group P1? with two mononuclear formula units in a cell of dimensions a = 7.9681(2) Å, b = 8.8644(2) Å, c = 18.8165(5) Å, α = 76.758(70)°, β = 78.490(2)° and γ = 77.679(2)°. The Cu(II) ion is five-coordinate in an axially elongated square pyramidal environment, with the four amine N atoms at the equatorial positions and the N atom of one thiocyanate at an apical site. The macrocyclic cyclam moiety adopts a stable trans-III configuration. The Cu–N basal plane bond length has a mean value of 2.037(2) Å. The coordinated Cu–NCS bond length is 2.322(3) Å. The N atom of the thiocyanate anion is connected to the macrocyclic ligand of the cation via an NH…N(CS) hydrogen bond. The UV-visible absorption and IR spectral properties are also discussed.  相似文献   
3.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.  相似文献   
4.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
5.
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.  相似文献   
6.
The separation and determination of 19 amino acids were examined using two stages derivatization with trifluoroacetylacetone and ethyl chloroformate from the column HP-5 (30 m × 0.32 mm id) with film thickness 0.25 ??m at an initial column temperature 100 °C for 2 min with ramping of 20 °C min?1 up to 250 °C with nitrogen flow rate of 3 mL min?1. The detection was performed by flame ionization detector. Total separation time was 10 min. The separation was repeatable with relative standard deviation (RSD) (n = 5) within 1.5?C1.9 and 1.3?C1.7% in terms of retention time and peak height/peak area, respectively. The method was applied for the determination of amino acids from skin samples of psoriatic patients (n = 6), arsenicosis patients (n = 5) and normal subjects (n = 9) and variation in the contents of the amino acids was noted. The RSDs for the determination were obtained within 3%.  相似文献   
7.
Fine D  Grattoni A  Zabre E  Hussein F  Ferrari M  Liu X 《Lab on a chip》2011,11(15):2526-2534
Recent work has elucidated the potential of important new therapeutic paradigms, including metronomic delivery and chronotherapy, in which the precise timing and location of therapeutic administration has a significant impact on efficacy and toxicity. New drug delivery architectures are needed to not only release drug continuously at precise rates, but also synchronize their release with circadian cycles. We present an actively controlled nanofluidic membrane that exploits electrophoresis to control the magnitude, duration, and timing of drug release. The membrane, produced using high precision silicon fabrication techniques, has platinum electrodes integrated at the inlet and outlet that allow both amplification and reversal of analyte delivery with low applied voltage (at or below 2 VDC). Device operation was demonstrated with solutions of both fluorescein isothiocyanate conjugated bovine serum albumin and lysozyme using fluorescence spectroscopy, fluorescence microscopy, and a lysozyme specific bio-assay and has been characterized for long-term molecular release and release reversibility. Through a combination of theoretical and experimental analysis, the relative contributions of electrophoresis and electroosmosis have been investigated. The membrane's clinically relevant electrophoretic release rate at 2 VDC exceeds the passive release by nearly one order of magnitude, demonstrating the potential to realize the therapeutic paradigm goal.  相似文献   
8.
We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac)2CrIII(μ-ox)LnIII(HBpz3)2] (Cr(ox)Ln:acac=acetylacetonate, ox2−=oxalate, HBpz3=hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac)2(ox)] and [(HBpz3)2Ln(μ-ox)Ln(HBpz3)2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the 2E state of Cr(III) moiety. At room temperature no 2E-4A2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the 2E-4A2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.  相似文献   
9.
Journal of Thermal Analysis and Calorimetry - The enhancement of heat transfer in a new kind of hybrid nanofluid is more than that of a single nanoparticle. Also, the thermal conductivity of...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号