首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  国内免费   2篇
化学   61篇
力学   1篇
数学   7篇
物理学   18篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有87条查询结果,搜索用时 46 毫秒
1.
The subcomponent self‐assembly of a bent dialdehyde ligand and different cationic and anionic templates led to the formation of two new metallosupramolecular architectures: a FeII4L6 molecular rectangle was isolated following reaction of the ligand with iron(II) tetrafluoroborate, and a M5L6 trigonal bipyramidal structure was constructed from either zinc(II) tetrafluoroborate or cadmium(II) trifluoromethanesulfonate. The spatially constrained arrangement of the three equatorial metal ions in the M5L6 structures was found to induce small‐molecule transformations. Atmospheric carbon dioxide was fixed as carbonate and bound to the equatorial metal centers in both the Zn5L6 and Cd5L6 assemblies, and sulfur dioxide was hydrated and bound as the sulfite dianion in the Zn5L6 structure. Subsequent in situ oxidation of the sulfite dianion resulted in a sulfate dianion bound within the supramolecular pocket.  相似文献   
2.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   
3.
The reaction of 2,6‐diformylpyridine with diverse amines and PdII ions gave rise to a variety of metallosupramolecular species, in which the PdII ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine‐containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane.  相似文献   
4.
Edge adsorption and terrace molecular domain structures of Cobalt(II) tetraphenylporphyrin (CoTPP) on Au(1 1 1) were investigated using STM at room temperature. Two different terrace domain structures were observed. These two arrangements were found to be enantiomorphous arrangements of the molecular assemblies, where the molecular rows rotate ±16° with respect to the [1 2 1] direction of Au(1 1 1). In both arrangements, most of the CoTPP molecules were imaged as one bright dot with four legs, corresponding to a planar conformation of the macrocycle. A small proportion of the CoTPP molecules appear as two bright dots, corresponding to a saddle shape of the macrocycle. Our results show that most of the saddle-deformed CoTPP molecules are distributed in the vicinity of the bridging sites of the reconstructed gold surface. Besides terrace domains, we found that several edge adsorption structures of CoTPP are also stable enough to be imaged and analysed in detail. Furthermore, the relationship between edge structures and terrace domains was revealed.  相似文献   
5.
In this article, we review advances in experimental techniques for the electrical characterization of artificial mesostructures from nanometer to micrometer size. As the scale of electronic devices is rapidly approaching the 100-nm benchmark, new tools are becoming necessary to study and characterize them. We are also at a point where new tools to fabricate these devices are becoming increasingly relevant. We discuss the various characterization techniques applicable to objects of this scale, with particular emphasis on scanned probe methods.  相似文献   
6.
A multiwavelength fiber ring laser comprising of a Lyot filter and hybrid gain medium is presented. A wavelength channel spacing of 100 GHz is achieved by appropriate tuning of the Lyot filter length. Four wavelength channels are simultaneously mode-locked at 10 GHz using an electroabsorption modulator. We highlight how the intra-cavity modulator can affect the stability of the mode-locked laser spectrum when used in conjunction with a Lyot filter. We show that, due its reduced polarization sensitivity, an electroabsorption modulator significantly improves the stability of the mode-locked laser spectrum when compared to using a Mach-Zehnder modulator.  相似文献   
7.
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well‐defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet‐dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.  相似文献   
8.
基于大规模分子动力学仿真,研究了包含多个晶粒的柱状银纳米线在不同温度下沿轴向拉伸形变的行为。结果表明,当温度低于200 K时,含较大晶粒的体系中位错滑移是其形变的主要机理,最大应力随温度变化不显著。当环境温度高于200 K时,晶粒的滑动逐渐成为形变的主导因素,这一特征在含更小晶粒的体系内表现更明显。同时最大应力随温度显著降低。基于上述结果,进一步讨论了温度对Hall-Petch关系的影响。  相似文献   
9.
The aim of this study was to evaluate 99mTc labeled human β-defensin-1 (HBD-1) for discrimination between bacterial infection and sterile inflammation. For this purpose, HBD-1 was radiolabeled with 99mTc and its in vivo distribution was evaluated in inflamed rats with Staphylococcus aureus (S. aureus) and sterile inflamed rats with turpentine oil. After injection into inflamed and sterile inflamed rats, 99mTc-HBD-1 was rapidly removed from the circulation via the kidneys. Binding of 99mTc-HBD-1 to inflamed muscle (T/NT = 20 at 120 min) was two times higher than binding to sterile inflamed muscle (T/NT = 10 at 120 min) of rats. It was demonstrated that 99mTc-HBD-1 can be used to detect S. aureus inflammation in rats. However, the radiolabeled antimicrobial peptide showed only poor uptake in sterile inflammation with turpentine oil in rats. As a result, 99mTc-HBD-1 can be useful for detection of bacterial inflammation.  相似文献   
10.
Cefuroxime axetil, a cephalosporin antibiotic used to treat bacterial infections, was investigated to label with 99mTc. Radiolabeling of cefuroxime axetil was carried out by using stannous chloride method. Effects of pH and stannous chloride amount on the radiolabeling yield were investigated. The radiochemical purity of 99mTc-cefuroxime axetil was determined by thin layer radio chromatography (TLRC), electrophoresis and high performance liquid chromatography. The maximum radiolabeling yield was 98±1%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号