首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
化学   3篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
以MoO_3为前驱物,CH_4/H_2为碳源,采用程序升温直接还原碳化法制备不同碳化终温(640、660、680、700和720℃)的碳化钼催化剂,通过XRD、N_2吸附-脱附、SEM、TEM、XPS和Raman表征研究碳化钼的物理性质和结构性质,并研究不同碳化终温碳化钼对喹啉加氢脱氮的催化性能。结果表明,不同碳化终温的碳化钼催化剂均为β-Mo_2C,碳化终温可显著改变碳化钼表面物种含量、平均孔径和介孔分布。碳化终温为680℃时,催化剂碳化程度较高,表面氧物种含量最低,表面C/Mo物质的量比最高,对应的催化活性也最佳,在340℃、4 MPa条件下,喹啉的转化率和脱氮率均高达99%以上,芳香族类化合物的选择性可达37.8%,显示出较低的芳环破坏性。表面组成尤其是表面氧对于β-Mo_2C上喹啉加氢脱氮反应途径的调控至关重要。  相似文献   
2.
以金属有机骨架材料UIO-66热解制备了具有片层簇状结构ZrO2.UIO-66热解条件影响CoMo S/ZrO2的晶相、表面原子含量、形貌以及比表面积(可达117.7 m2/g).随着热解温度升高,ZrO2晶相呈现由四方相向单斜相的转化,表面Mo含量呈现先减小后增加的趋势,片层结构逐渐变短,而簇状结构则逐渐由蓬松变得致密,比表面积逐渐减小.热解温度为600℃时出现催化剂片层结构的坍塌聚集以及晶相的破坏.当UIO-66热解温度为500℃、热解时间为4 h时,CoMoS/ZrO2明显出现单斜相,表面Mo原子含量较高,片层结构较均一,此催化剂在4-甲基酚加氢脱氧中显示出较高的活性和对甲苯的选择性,4-甲基酚转化率达100%,甲苯的选择性达82%.  相似文献   
3.
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co3O4/聚吡咯/氧化石墨烯(Co3O4/Ppy/GO).其形貌为Co3O4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co3O4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800℃高温煅烧处理后,Co3O4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co3O4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co3O4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co3O4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号