首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   12篇
化学   12篇
  2020年   1篇
  2018年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C.通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法,研究了Li3V2(PO4)3/C在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V).结果表明,3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的.3.0-4.5 V区间0.1C (1C=150 mA?g-1)倍率首次放电比容量为127.0 mAh?g-1,循环50次后容量保持率为99.5%,而3.0-4.8 V区间的分别为168.2 mAh?g-1和78.5%.经过高倍率测试后再回到0.1C倍率充放电,3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%.经过3.0-4.8 V电压区间测试后,少部分第三个锂离子能够在低于4.5 V的电压脱出,使3.0-4.5 V电压区间的放电比容量提升了7.4%. CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失.极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后, Li3V2(PO4)3的结构发生了轻微的改变.电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V.结构变形和V溶解可能是Li3V2(PO4)3在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
2.
通过低温溶剂热的方法成功制备出了LiCr0.2Ni0.4Mn1.4O4尖晶石正极材料。通过此法,溶液的饱和蒸汽压急剧降低且在室温(25℃)下即可沸腾。所有的金属离子可在随后的热聚合过程中均匀分散且煅烧后所得材料无杂质相生成。采用了热重分析,X射线衍射,扫描电镜、循环伏安,交流阻抗等测试手段对材料进行了表征。结果表明:此法所得材料含有Mn3+,为Fd3m晶型,且其形貌规则、粒度分布均一。1C和10C下放电容量为140.5和121.0 mAh·g-1,10C下100次循环容量保持率高达96.9%。其优异的电化学性能可归因于均相的前驱体制备过程,高结晶度且无杂相生成,以及较高的锂离子扩散系数诸因素的共同作用。  相似文献   
3.
以乙二胺四乙酸为配位剂采用水热法制备了棒状LiFePO4/C材料。采用X射线衍射、扫描电镜、透射电镜、循环伏安、交流阻抗和恒电流充放电测试等对材料进行表征。结果表明:乙二胺四乙酸对材料的形貌和电性能均有很大影响。通过加入乙二胺四乙酸, 材料的形貌由不规则的颗粒变为棒状的颗粒且颗粒的厚度由140~200 nm减少至40~90 nm, 材料的表面包覆约3.5 nm的均匀碳层, 且该材料极化较小且界面阻抗较低。0.1C放电比容量为167 mAh·g-1(接近理论容量170 mAh·g-1)。  相似文献   
4.
分别以四水磷酸铁(FePO4·4H2O)和二水草酸亚铁(FeC2O4·2H2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe0.5Co0.5PO4固溶体材料(LiFe0.5Co0.5PO4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC2O4·2H2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 mA·g-1),放电比容量为137.5 mAh·g-1,在10C仍具有57.6 mAh·g-1的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   
5.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C. 通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法, 研究了Li3V2(PO4)3/C 在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V). 结果表明, 3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的. 3.0-4.5 V区间0.1C (1C=150mA·g-1)倍率首次放电比容量为127.0 mAh·g-1, 循环50次后容量保持率为99.5%, 而3.0-4.8 V区间的分别为168.2 mAh·g-1和78.5%. 经过高倍率测试后再回到0.1C倍率充放电, 3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%. 经过3.0-4.8 V电压区间测试后, 少部分第三个锂离子能够在低于4.5V的电压脱出, 使3.0-4.5 V电压区间的放电比容量提升了7.4%. CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失. 极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后, Li3V2(PO4)3的结构发生了轻微的改变. 电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V. 结构变形和V溶解可能是Li3V2(PO4)3在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
6.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   
7.
以有机-水为混合溶剂, 采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C, 选取乙醇、乙二醇和1,2-丙二醇为有机溶剂, 聚丙烯酸(PAA)为碳源和螯合剂. 通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电以及循环伏安测试等方法, 研究了产物的结构形貌及电化学性能. XRD测试结果表明所有溶剂制备的样品结晶良好, 有机溶剂的加入不影响Li3V2(PO4)3材料的晶型结构. 恒流充放电结果表明有机溶剂的加入改善了材料的电化学性能. 以1,2-丙二醇-水为溶剂的样品电化学性能最好, 在3.0-4.5 V电压范围内, 0.1C (1C=150 mA·g-1)倍率首次放电比容量为132.89 mAh·g-1, 10C倍率首次放电比容量达125.42 mAh·g-1, 循环700周后容量保持率为95.79%, 具有良好的倍率性能与循环性能; 在3.0-4.8 V电压范围内倍率性能较差. 扫描电镜结果表明混合溶剂制备的样品呈片状和针状, 这种形状有利于锂离子的扩散, 因此提高了材料的电化学性能.  相似文献   
8.
通过低温溶剂热的方法成功制备出了LiCr0.2Ni0.4Mn1.4O4尖晶石正极材料。通过此法,溶液的饱和蒸汽压急剧降低且在室温(25℃)下即可沸腾。所有的金属离子可在随后的热聚合过程中均匀分散且煅烧后所得材料无杂质相生成。采用了热重分析,X射线衍射,扫描电镜、循环伏安,交流阻抗等测试手段对材料进行了表征。结果表明:此法所得材料含有Mn3+,为Fd3m晶型,且其形貌规则、粒度分布均一。1C和10C下放电容量为140.5和121.0mAh·g-1,10C下100次循环容量保持率高达96.9%。其优异的电化学性能可归因于均相的前驱体制备过程,高结晶度且无杂相生成,以及较高的锂离子扩散系数诸因素的共同作用。  相似文献   
9.
采用湿法球磨和原位热解碳包覆相结合的方法, 分别以硬脂酸、柠檬酸、聚乙二醇-6000 (PEG-6000)、β-环糊精为碳源, 制备了不同结构的Na2MnPO4F/C 复合材料, 并研究了它们作为锂离子电池正极材料的电化学行为. 通过X射线衍射(XRD)、扫描电镜(SEM)、BET比表面积测试、恒流充放电等表征手段, 比较和分析了产物的结构、形貌及电化学性能. 研究结果表明, 由不同碳源制备的材料在形貌和颗粒尺寸上有明显差异, 进而对它们的电化学性能造成很大影响. 影响电化学性能的关键因素在于材料一次颗粒的大小. 其中, 以柠檬酸为碳源制备的样品呈现出典型的微纳结构和最小的一次颗粒(10-40 nm). 并给出最佳的电化学性能: 在1.5-4.8 V电压范围内, 以5 mA·g-1充放电电流获得的首次放电比容量约为80 mAh·g-1, 且循环稳定性良好.  相似文献   
10.
采用快速共沉淀法合成了立方体的层状无钴富锂固溶体正极材料0.6Li2MnO3-0.4LiNi0.5Mn0.5O2.通过X射线衍射(XRD), X射线光电子能谱(XPS),电感耦合等离子体(ICP),扫描电子显微镜(SEM),透射电子显微镜(TEM)及电性能测试等手段对材料进行了表征.结果表明,材料具有典型的α-NaFeO2六方层状晶体结构且具有与目标材料相似的化学组成. SEM和TEM结果表明,材料由粒径为40-200 nm的纳米颗粒组装成立方体结构.在文中给出了一个立方团聚体可能的形成机理.电化学性能测试(2.0-4.8 V电压范围内(vs Li/Li+))显示该材料具有优异的倍率性能, 0.1C和10C倍率下的放电比容量分别是243和143 mAh·g-1.此外,该材料具有良好的循环稳定性,即使在大倍率测试后, 0.5C倍率下循环72次仍显示出90.7%的高容量保持率.这种具有简易操作步骤和优异结果的共沉淀方法是一种经济的能够促进锂离子电池正极材料大规模应用的技术手段.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号