首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   29篇
化学   31篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2008年   1篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C.通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法,研究了Li3V2(PO4)3/C在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V).结果表明,3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的.3.0-4.5 V区间0.1C (1C=150 mA?g-1)倍率首次放电比容量为127.0 mAh?g-1,循环50次后容量保持率为99.5%,而3.0-4.8 V区间的分别为168.2 mAh?g-1和78.5%.经过高倍率测试后再回到0.1C倍率充放电,3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%.经过3.0-4.8 V电压区间测试后,少部分第三个锂离子能够在低于4.5 V的电压脱出,使3.0-4.5 V电压区间的放电比容量提升了7.4%. CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失.极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后, Li3V2(PO4)3的结构发生了轻微的改变.电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V.结构变形和V溶解可能是Li3V2(PO4)3在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
2.
以乙二胺四乙酸为配位剂采用水热法制备了棒状LiFePO4/C材料。采用X射线衍射、扫描电镜、透射电镜、循环伏安、交流阻抗和恒电流充放电测试等对材料进行表征。结果表明:乙二胺四乙酸对材料的形貌和电性能均有很大影响。通过加入乙二胺四乙酸, 材料的形貌由不规则的颗粒变为棒状的颗粒且颗粒的厚度由140~200 nm减少至40~90 nm, 材料的表面包覆约3.5 nm的均匀碳层, 且该材料极化较小且界面阻抗较低。0.1C放电比容量为167 mAh·g-1(接近理论容量170 mAh·g-1)。  相似文献   
3.
通过低温溶剂热的方法成功制备出了LiCr0.2Ni0.4Mn1.4O4尖晶石正极材料。通过此法,溶液的饱和蒸汽压急剧降低且在室温(25℃)下即可沸腾。所有的金属离子可在随后的热聚合过程中均匀分散且煅烧后所得材料无杂质相生成。采用了热重分析,X射线衍射,扫描电镜、循环伏安,交流阻抗等测试手段对材料进行了表征。结果表明:此法所得材料含有Mn3+,为Fd3m晶型,且其形貌规则、粒度分布均一。1C和10C下放电容量为140.5和121.0 mAh·g-1,10C下100次循环容量保持率高达96.9%。其优异的电化学性能可归因于均相的前驱体制备过程,高结晶度且无杂相生成,以及较高的锂离子扩散系数诸因素的共同作用。  相似文献   
4.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C样品.结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响.通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小.当回流反应时间为10 h时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh g-1;当回流反应时间为16 h时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh g-1,循环性能良好,几乎无衰减.  相似文献   
5.
分别以四水磷酸铁(FePO4·4H2O)和二水草酸亚铁(FeC2O4·2H2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe0.5Co0.5PO4固溶体材料(LiFe0.5Co0.5PO4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC2O4·2H2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 mA·g-1),放电比容量为137.5 mAh·g-1,在10C仍具有57.6 mAh·g-1的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   
6.
Mg^2+掺杂对锂离子正极材料Li3V2(PO4)3的影响   总被引:4,自引:0,他引:4  
随着市场对锂离子电池(LIB)需求的日趋增长,对电极活性物质的要求也在朝着高能量密度、低成本、安全稳定、环境友好的方向努力,其中正极材料相对负极材料的发展较为缓慢,成为制约LIB发展的瓶颈。NASICON结构的Li3V2(PO4)3属于单斜晶系,相对金属锂具有很高的电势,理论容量高达19  相似文献   
7.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C. 通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法, 研究了Li3V2(PO4)3/C 在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V). 结果表明, 3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的. 3.0-4.5 V区间0.1C (1C=150mA·g-1)倍率首次放电比容量为127.0 mAh·g-1, 循环50次后容量保持率为99.5%, 而3.0-4.8 V区间的分别为168.2 mAh·g-1和78.5%. 经过高倍率测试后再回到0.1C倍率充放电, 3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%. 经过3.0-4.8 V电压区间测试后, 少部分第三个锂离子能够在低于4.5V的电压脱出, 使3.0-4.5 V电压区间的放电比容量提升了7.4%. CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失. 极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后, Li3V2(PO4)3的结构发生了轻微的改变. 电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V. 结构变形和V溶解可能是Li3V2(PO4)3在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
8.
以月桂酸为碳源和表面活性剂,氢氧化锂、碳酸锂和醋酸锂为锂源,采用流变相法制备LiFePO4/C复合材料。运用X射线衍射(XRD)、扫描电子显微镜(SEM)、粒度分析、恒流充放电测试、循环伏安以及交流阻抗测试等方法对复合材料进行表征。结果表明,不同的锂源对LiFePO4/C复合材料的结构和电化学性能均有很大影响,以氢氧化锂为锂源合成的LiFePO4/C材料展示出最佳的循环性能和倍率性能。该材料在0.1C下放电比容量为153.4 mAh.g-1,在大倍率10 C下,容量保持率仍可达76%,甚至10C下循环800次后,容量衰减率仅有4%,SEM结果显示该材料具有较小的粒径(~200 nm),且分布集中,有效提高了电子迁移速率,从而改进了LiFePO4/C的倍率性能。  相似文献   
9.
本文以LiOH.H2O、NH4VO3、H3PO4和柠檬酸为原料,采用溶胶-喷雾干燥法制备Li3V2(PO4)3/C正极材料,对比了喷雾前驱体直接煅烧与机械活化后煅烧的样品的结构、形貌及其电化学性能。采用XRD、SEM、BET和振实密度测试等对样品的结构、形貌等进行了表征;采用恒流充放电、CV和EIS等手段考察了材料的电化学性能。结果表明,溶胶-喷雾干燥得到的样品为多孔球壳形,其壳体由厚度为100 nm左右的纳米片组成,经机械活化后煅烧保持保持了其纳米片结构,其结晶度与振实密度改善较明显,电化学性能较优异。0.1C放电比容量为123.6 mAh.g-1,10C和20C高倍率放电比容量还高达107.8和106.0 mAh.g-1。电化学阻抗结果表明,由该方法制备的样品具有较小的电荷转移阻抗。  相似文献   
10.
采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-NaFeO2结构(空间群为R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 mAh·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 mAh·g-1(原始LiNi1/3Co1/3Mn1/3O2材料仅为30 mAh·g-1),倍率性能十分优异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号