首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
化学   5篇
  2021年   1篇
  2020年   3篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 828 毫秒
1
1.
通过水热合成法制备羟基磷灰石[Ca5(PO43(OH)]纳米线(HN),并与多壁碳纳米管(MWCNTs)导电纸形成层次交联的新型羟基磷灰石纳米线复合(HN/CNT)夹层.利用扫描电子显微电镜、傅里叶变换红外光谱(FTIR)和紫外-可见光谱(UV-Vis)等对材料的形貌与结构进行表征.电化学测试结果表明,含HN/CNT夹层的锂硫电池在1C倍率下循环200次后放电比容量仍保持在871 mA · h/g,每次循环衰减率仅为0.031%.  相似文献   
2.
通过一步碳化法制备富含氧化钴(CoO)的多孔碳(PC(Co))材料作为氧化锡(SnO_2)的载体。PC(Co)材料具有丰富的多孔结构,能够高效承载SnO_2。不仅如此,PC(Co)材料中的氧化钴能够作用于电化学反应,有效降低LiO_2的生成。但CoO参与反应会消耗大量的锂离子,所以选择添加氟化锂(LiF),在补锂的同时能够增强SEI膜的稳定性。SnO_2-PC(Co)/LiF电极活性物质的负载量高达1.51 mg·cm~(-2)。电化学测试表明,在电流密度为100 mAh·g~(-1)时,SnO_2-PC(Co)/LiF电极首次放电比容量达到1 653.63mAh·g~(-1),活性物质的利用率高达93.14%。循环100次后,放电比容量仍然达到1 070.68 mAh·g~(-1),且库仑效率仍然保持在99.81%。  相似文献   
3.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   
4.
利用水热合成法制备纳米NiO与多壁碳纳米管(MWCNTs)以及芳纶纸(AP)制备出一种新型复合夹层(NMAP)。NMAP夹层具有三维多孔结构,不但减小了活性物质的损失,还可以捕获可溶性多硫化物;NMAP夹层具有较强的化学吸附聚硫化物的能力。利用透射电子显微镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)等对复合夹层进行结构和性能的表征。电化学测试结果表明,NMAP夹层高性能锂硫电池在0.05C倍率下首次放电比容量达到1437 mAh·g^-1,活性物质的利用率高达85.8%;在4C大倍率下放电比容量仍然达到668 mAh·g^-1,且库伦效率仍然保持在99.1%;显示出良好的倍率和循环性能。  相似文献   
5.
新型多孔碳纳米片/碳纳米管(PC/CNT)材料表现出丰富的分级孔隙结构,具有较高的氧化锡(SnO2)负载量。通过PC和CNT交联形成的三维结构能够有效地提高锂离子传输速率和电子的传导。此外,在电极中掺杂的氟化锂(LiF)不仅能够降低SnO2-PC/CNT-LiF电极的电荷转移电阻,而且还能补充SEI膜形成时消耗的Li+,降低不可逆容量,增强SEI膜的稳定性。研究表明,SnO2-PC/CNT-LiF电极在电流密度为100 mA·g-1时,首次可逆比容量达到1 642.98 mAh·g-1,活性物质的利用率高达90.12%,循环100次后,放电比容量仍然达到745.11 mAh·g-1,且库仑效率仍然保持在95.1%以上,显示出优异的倍率和循环性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号