首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  国内免费   9篇
化学   57篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2002年   4篇
  2001年   7篇
  1999年   2篇
  1998年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
负载型纳米金催化葡萄糖氧化研究进展   总被引:1,自引:1,他引:0  
负载型金催化剂的制备具有重要的理论和应用价值。葡萄糖作为一种可再生资源已用于合成具有应用价值的葡萄糖酸。作为“绿色化学”反应过程,负载型金催化剂催化葡萄糖氧化已经成为热门的研究领域。负载型金催化剂具有产物专一性强、催化活性高、反应条件温和、长期催化稳定性等优点。本文主要对负载型金催化剂制备方法及其催化葡萄糖氧化方面近年来的进展进行综述。  相似文献   
2.
随着纳米技术和生物技术的发展,将纳米颗粒材料与天然酶结合起来构建纳米杂化酶,可以解决酶的负载量低、活性和稳定性不好等问题.目前,新型纳米颗粒材料-纳米金被广泛应用于构建杂化酶体系.我们将从纳米金杂化酶的种类、制备方法、优势以及应用等方面对纳米金杂化酶的研究进展进行概述.  相似文献   
3.
利用混合自组装的方式,将Mb功能化纳米金(Mb-AuNPs-MUA)修饰在金电极表面,以制备出检测超氧阴离子无电子媒介体生物传感器.采用UV-Vis考察修饰纳米团簇的相关特征,利用修饰电极检测DMSO/NaOH体系产生的超氧阴离子.试验结果表明:该修饰电极对超氧阴离子的歧化反应具有显著的催化活性,计算出异相电子传递速率常数(Ks)为0.041 cm/s,电子转移系数(α)为0.435.在0.06~0.2 μmol/L范围内,超氧阴离子浓度与峰电流呈良好的线性关系,相关系数R2为0.9719,方法检出限(LOD)为1.129×10-3 μmol/L(S/N=3)、3.683×10-3 μmol/L(S/N=10),精密度试验测定得相对标准偏差(RSD,n=9)为3.83%.  相似文献   
4.
陈林林  王振兴  韩可  李伟  辛嘉英 《合成化学》2018,26(10):787-794
对化学合成、生物合成等方法制备超氧化物歧化酶模拟物的研究进行了系统综述,对比分析了各种方法的优势和局限性,并展望了超氧化物歧化酶模拟物未来的发展方向。  相似文献   
5.
膜反应器中萘普生甲酯的动态拆分   总被引:3,自引:0,他引:3  
在碱催化连续原位消旋条件下,利用CRL脂肪酶(Candida rugosa lipase)催化的萘普生甲酯立体选择性水解反应。动态拆分制备(S)-普生。使用硫水硅橡胶膜隔离生物催化拆分反应和碱催化消旋反应,解决了常规动态拆分反应中生物催化剂难以承受原位化学消旋苛刻反应条件的难题。为了利于从水-有机溶剂乳化体系中分离产物和克服产物抑制,将亲水半透膜引入搅拌罐反应器,在该膜反应器中进行动态拆分反应。当转化率超过60%时,产物(S)-萘普生的对映体过量值(eep)仍在96%以上,在反应过程中还发现CRL脂肪酶同工酶的转化。  相似文献   
6.
甲基弯菌IMV3011细胞生物催化二氧化碳制甲醇   总被引:3,自引:1,他引:2  
甲基弯菌IMV 3011可以催化二氧化碳生物转化生成甲醇.在细胞悬浮液中充入二氧化碳后,反应一段时间后在反应液中检测到了甲醇产生.但是甲烷氧化细菌细胞合成甲醇的能力受到了细胞内还原当量的限制.研究发现,细胞内贮存的聚-β羟基丁酸(PHB)分解后能够产生还原当量,可以提高甲醇的产生能力.本文通过改变培养基中氮和铜的起始浓度对PHB积累量进行调节来提高甲基弯菌IMV 3011还原二氧化碳生成甲醇的能力.结果表明,随着细胞内PHB含量的增加甲醇的产生能力也会增加.当细胞内PHB的积累量达到38.6%时,将二氧化碳还原成甲醇的能力最强.当PHB的积累量超过38.6%时细胞生成甲醇的能力反而降低.  相似文献   
7.
甲烷是大气中主要温室气体之一. 由于甲烷排放的增加, 近200年来其在大气中的含量以每年1%的速度急剧上升, 对温室效应贡献已达到15%~20%. 广泛存在于自然界中的甲烷氧化细菌 (Methanotrophic bacteria或 Methane-oxidizing bacteria) 能够以甲烷为唯一碳源和能源进行生长, 通过甲烷单加氧酶(Methane monooxygenase, MMO)开始的一个酶系将甲烷最终代谢成二氧化碳和水, 并在此过程中获得生长所需的碳骨架和能量.  相似文献   
8.
从甲基弯菌M ethylosinus trichosporium IMV3011的膜中分离出颗粒性甲烷单加氧酶(Particulate MMO,Pmmo)t和NADH脱氢酶,只有当两者同时存在,并添加去垢剂解离膜组分时,NDAH才能为pMMO提供还原当量,对苯二酚能够在整细胞和膜水平代替NADH作为PMMO的电子供体,对于纯化的PMMO,对苯二分配仍是有效的电子供体,而NADH却是无效的电子供体。在NADH脱氢酶存在下,NADH可将对苯醌还原为对苯二酚,纯化过程中,采用对苯二酚作为PMMO活性分析时的电子供体,不必共纯化NADH脱氢酶,且有利于对PMMO活性中心进行深入研究。  相似文献   
9.
甲烷氧化细菌催化二氧化碳生物合成甲醇的研究   总被引:2,自引:0,他引:2  
甲烷氧化细菌中包含的甲烷单加氧酶(MMO)、甲醇脱氢酶(ADH)、甲醛脱氢酶(FaldDH)、甲酸脱氢酶(FateDH)经过一系列反应能够把甲烷深度氧化生成二氧化碳,并生成一定的能量物质.把二氧化碳还原为甲醇是一个需要能量的过程,目前还没有已知的有机体在温和条件下完成这一反应.研究发现,甲基弯菌Methylosi-nus trichosporium IMV 3011可以催化二氧化碳生物转化生成甲醇.在休眠的悬浮细胞中充人二氧化碳后,反应一段时间在反应液中检测到了甲醇.二氧化碳转化成甲醇是一个需要能量推动的反应,为了补充反应所消耗的能量.反应一段时间后需要用甲烷进行再生,以恢复细胞中的还原当量NADH.我们进行了反应再生的交替连续批式反应,甲醇积累量能够维持在一个比较稳定的水平.理论上,反应不会增加温室效应,这是一个有效的、环境友好的、可恢复的反应过程.  相似文献   
10.
α-生育酚琥珀酸酯(α-tocopherol succinate)是天然维生素E的衍生物,它是由琥珀酸与α-生育酚的β-色酮环的6位羟基成酯而形成的化合物(图1),由于丧失了自由的羟基而不具有维生素E的抗氧化活性,在空气中较为稳定,因其可保护α-生育酚的6位羟基,使α-生育酚在储存和运输中稳定性增加,而广泛用于α-生育酚的运输和储存。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号