首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   1篇
化学   3篇
物理学   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
基于LiNi0.5Mn1.5O4的5 V电池尚未实现实际应用,解决这一问题的关键在于电解液调控和电极界面优化。我们系统性研究了三(三甲基硅烷)硼酸酯(TMSB)和三(三甲基硅烷)亚磷酸酯(TMSPi)作为常规碳酸乙烯酯(EC)-LiPF6基电解液添加剂在LiNi0.5Mn1.5O4电池体系中的应用。结合理论计算、物理化学表征以及电化学手段分析了三(三甲基硅烷)类添加剂在高压电解液中的作用机制。研究发现,TMSB和TMSPi均可以通过优化电极/电解液界面来提高LiNi0.5Mn1.5O4循环稳定性和库仑效率。TMSB中缺电子B可与阴离子相互作用,稳定PF6-,抑制LiNi0.5Mn1.5O4正极阻抗的持续增加。TMSPi具有更高的最高占据分子轨道(HOMO)能级,可在更低电位下钝化高压正极,提高LiNi0.5Mn1.5O4放电电压平台和放电容量。此外,TMSPi还可通过亲核反应参与石墨界面组分优化,改善负极循环性能。石墨LiNi0.5Mn1.5O4软包电池在含1% TMSPi电解液中1C循环100次后的容量保持率为88.9%,优于基础电解液(60.5%)和含1% TMSB的电解液(77.4%)。  相似文献   
2.
Ni-rich layered oxide cathode materials,such as LiNi0.83Co0.12Mn0.05O2 (NCM811),exhibit high specific capacity and low cost,and become cathode material preference of high-energy-density Li-ion batteries.However,these cathode materials are not stable and will form Li-poor reconstructed layers and alkaline compounds (Li2CO3,Li OH) on the surface during the storage and processing in humid air,resulting in serious deterioration of ele...  相似文献   
3.
近几年,电动汽车市场的飞速发展对锂离子电池的能量密度和安全性提出了更高的要求. 然而,过去近30年,在应用终端市场的大力推动下,锂离子电池的电极材料、电池结构设计和生产工艺都已经发展得比较成熟,容量提升空间已经比较小,想要进一步提高现有锂离子电池的能量密度,需要对锂离子电池的整个系统和工作原理有更深刻和全面的理解. 存在于锂离子电池电极材料和电解液之间的固态电解质中间相(solid electrolyte interphase,SEI)已被证明是一个影响电池性能的重要因素,目前学术界和产业界对其认识还不是很全面,尤其是高分辨、工况下以及多技术联合的界面表征工作较少见到报道. 原子力显微镜(atomic force microscopy,AFM)通过探测针尖与样品之间的相互作用力,能够在原子尺度上原位表征液态电池界面的形貌以及力学特性,对于电极界面的理解和调控非常重要. 本文作者通过总结近几年AFM在锂离子电池SEI研究的中的应用,并结合本课题组在该领域的工作,对AFM技术在锂离子电池SEI研究中的应用做了总结和展望,对加深锂离子电池界面的理解,以及构建稳定锂电池界面的相关研究有参考意义.  相似文献   
4.
研究了三(三甲基硅烷)亚磷酸酯(TMSP)添加剂对高镍三元正极材料Li Ni_(0.83)Mn_(0.05)Co_(0.12)O_2(LNMC811)高电压循环性能的影响。结合电化学表征、理论计算、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)等方法研究发现,在高电位(4.5 Vvs Li/Li~+)下,TMSP添加剂能够在LNMC811正极表面被氧化分解,生成一层富含导锂离子性能好的硅酸盐和电化学稳定的无机碳酸锂,且电解液主要分解产物(有机碳酸锂和氟化锂)含量较少的正极固体电解质界面(CEI)膜;分析表明覆盖在正极表面的薄而均匀的CEI膜,能够很好的降低充放电过程的极化电压,隔离电解液和正极的接触,减少电解液的分解,抑制金属离子的溶出,稳定正极晶体结构,使LNMC811材料能够在4.5 V(vs Li/Li~+)高电压循环时仍然保持良好的循环性能和倍率性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号