首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   2篇
化学   3篇
晶体学   3篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   
2.
以硅溶胶、葡萄糖和TiO_2为初始原料,采用碳热还原法在氩气气氛下合成SiC-TiC复合粉末。探讨了不同反应温度对SiC-TiC复合粉末的物相组成、粒径分布、显微形貌等方面的影响。采用X-射线衍射仪(XRD)、激光粒度分析仪、扫描电镜(SEM)等手段对所合成的SiC-TiC复合粉末进行表征。研究结果表明:SiC-TiC复合粉末适宜的合成条件为在1550℃保温2 h。在1550℃下合成的SiC-TiC复合粉末主要由少量的片状颗粒、一定量的晶须以及大量的近似球状颗粒构成。粉末样品中SiC晶须的生长机理遵循气-固(VS)机理。  相似文献   
3.
以碳化硅(SiC)、二氧化钛(TiO_2)和不同种类碳源为初始原料,采用碳热还原法在氩气气氛下原位合成SiCTiC超细粉末。探讨了不同碳源和不同反应温度对所合成的SiC-TiC超细粉末的物相组成和显微形貌的影响。采用X-射线衍射仪(XRD)、激光粒度分析仪、扫描电镜(SEM)等手段对所合成的SiC-TiC超细粉末进行表征。实验结果表明,以蔗糖为碳源合成SiC-TiC超细粉末的适宜条件为1450℃保温2 h;以炭黑或葡萄糖为碳源合成超细粉末的适宜条件为1500℃保温2 h。三种碳源中以炭黑为碳源时所合成的SiC-TiC超细粉末粒度最小且合成出的粉末样品分散性好,大部分球状颗粒在0.5~1.0μm左右。在SiC粉末中原位合成的TiC颗粒,以粒径在0.1~0.2μm左右的不规则的多样化结构颗粒存在。  相似文献   
4.
以溶剂热法制备氨基功能化的Fe3O4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO2层和介孔TiO2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe3O4表面包覆上了无定形结构的SiO2和TiO2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe3O4颗粒的尺寸在40~50 nm之间,Fe3O4@SiO2@mTiO2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m2·g-1)和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   
5.
采用高温熔融冷淬法制备70.75TeO_2-19ZnO-9.5La_2O_3-0.75Tm_2O_3-xYb_2O_3碲酸盐玻璃,使用差示扫描量热仪(DSC)分析了玻璃样品的热稳定性,表明样品均具有良好的热稳定性。根据紫外-可见-近红外分光光度计测量得到的玻璃吸收光谱,结合Judd-Ofelt理论,计算了Tm~(3+)在玻璃中的Judd-Ofelt强度参数、自发辐射概率A、荧光分支比β和辐射寿命τR等光谱参数。结果表明,当Yb~(3+)掺杂浓度为0.625mol%时,Tm~(3+)在~3H_4处的荧光寿命最长,为0.443 ms,表明铥镱共掺杂碲酸盐玻璃有望成为一种理想的S波段光纤放大器用基质材料。  相似文献   
6.
以氨基功能化的Fe_3O_4纳米颗粒为磁核,结合直接沉淀法和模板法在其表面包覆上介孔MoO_3层,制备磁性-微波热转换性-介孔结构于一体的多功能核-壳结构复合纳米载体Fe_3O_4@mMoO_3,并对其结构、载药及微波控制靶向给药性进行研究。TEM图表明所得的复合纳米载体具有明显的核壳结构,完美的球形,且壳层中有清晰的孔状结构。磁性和微波热转换特性分析表明,该复合载体兼具良好的磁性和微波热转换特性,可实现药物的靶向可控给药。以布洛芬(IBU)为模型药物,对该复合纳米载体的药物负载能力和微波响应可控释放性进行研究,结果表明,在持续微波辐射90 s时IBU的释放率达到90%,远远高于仅搅拌时的释放率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号