首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
化学   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
以尿素和二氰二胺为原料热聚合得到石墨相氮化碳,分别采用直接二次煅烧和熔盐离子热后热处理在不同温度下对产物进行后热处理,得到氮缺陷氮化碳CN和CNS。利用X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、透射电镜(TEM)等手段对所制备样品进行表征和分析,探讨了不同热处理温度和加热方法对催化剂微观聚合结构的影响;同时以光解水制氢为测试方法,考察了催化剂的可见光催化性能。结果表明,熔盐离子热更有利于氮化碳的层间聚合,得到高结晶度材料;在面内七嗪聚合单元中引入氮缺陷,产生末端氰基,优化电荷密度分布,增强电荷流动性;克服粒子尺寸效应,扩展催化剂的光吸收范围;当后热处理温度为500℃时,制备的CNS-500表现出优异的光解水制氢活性,是同温度下直接热处理得到的催化剂的3.84倍。  相似文献   
2.
以草酸为氧源,二聚氰胺和尿素为原料,采用两步热聚合方式合成氧掺杂氮化碳纳米片催化剂(CNO)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱分析(XPS)、荧光光谱(PL)及电化学测试等技术对催化剂进行结构表征分析。在可见光照射下通过分解水制氢反应对CNO的光催化还原性能进行评价。结果表明,草酸中的O元素通过取代氮化碳三嗪环结构中N原子直接键合到sp~2杂化碳上,形成O掺杂CNO。经O掺杂改性后的氮化碳具有良好的层状堆积结构,可见光吸收性明显提高,同时禁带宽度降低。O掺杂的引入加速了光生电子-空穴对的分离和传输,能大幅度提高氮化碳的光催化分解水制氢性能,在可见光照下达88.6μmol·h~(-1),是未掺杂CN的3.91倍。  相似文献   
3.
分别以直接热聚合法和水热合成法制备得到二维硼掺杂氮化碳(BCN)和四氧化三锡(Sn3O4)半导体材料, 采用超声复合和煅烧复合两种方法构建了BCN/Sn3O4复合材料. 利用 X 射线衍射(XRD)、 紫外-可见漫反射(UV-Vis)光谱、 透射电子显微镜(TEM)等手段对所制备样品进行了表征和分析, 探讨了不同复合方法对催化剂微观结构及光电性质的影响; 以可见光下光解水制氢和活化氧制过氧化氢为模型反应考察了催化剂的光催化性能. 结果表明, BCN与Sn3O4能够形成二维面-面复合结构, 相比于超声复合法, 直接煅烧法更有利于有效界面的形成, 使得界面间产生Sn3O4到BCN的电荷迁移, 增强了BCN表面电荷密度, 并使复合材料具有更加优化的光电响应和光催化还原活性, 其中煅烧法得到的复合样品BCN/Sn3O4-3C(Sn3O4与BCN质量比为3%)表现出显著增强的光解水制氢及活化氧制过氧化氢的活性.  相似文献   
4.
以三聚氰胺为原料, 氧化硼为硼源, 碘化铵为碘源, 采用一步煅烧法合成了硼、 碘共掺杂氮化碳催化剂(CNBI). 利用X射线衍射仪、 透射电子显微镜、 傅里叶变换红外光谱仪、 X射线光电子能谱仪、 紫外-可见光分光光度计及电化学工作站等对样品进行表征和分析, 利用可见光照射下光解水制氢反应来评价其催化性能. 研究结果表明, B, I元素均匀分散掺杂入氮化碳共轭骨架形成B, I共掺杂CN半导体材料. 相比于未掺杂材料CN, B, I共掺杂CN样品禁带宽度略微降低, 光吸收能力增强, 光生电子-空穴对的分离效率提高, 这主要归因于B, I元素的电负性差异有助于氮化碳光生电子和空穴的重新分散. 共掺杂样品CNBI(0.1, 0.3)具有最佳光解水制氢性能, 在可见光照射下产氢速率达104.3 μmol/h, 分别是纯CN(22.74 μmol/h)的4.6倍, B掺杂氮化碳CNB(0.1)(51.92 μmol/h) 的2.0倍及碘掺杂氮化碳CNI(0.3)(33.37 μmol/h) 的3.1倍.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号