首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   6篇
化学   9篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 250 毫秒
1
1.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO4)3/C.通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法,研究了Li3V2(PO4)3/C在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V).结果表明,3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的.3.0-4.5 V区间0.1C (1C=150 mA?g-1)倍率首次放电比容量为127.0 mAh?g-1,循环50次后容量保持率为99.5%,而3.0-4.8 V区间的分别为168.2 mAh?g-1和78.5%.经过高倍率测试后再回到0.1C倍率充放电,3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%.经过3.0-4.8 V电压区间测试后,少部分第三个锂离子能够在低于4.5 V的电压脱出,使3.0-4.5 V电压区间的放电比容量提升了7.4%. CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失.极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后, Li3V2(PO4)3的结构发生了轻微的改变.电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V.结构变形和V溶解可能是Li3V2(PO4)3在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
2.
采用溶胶-凝胶法制备锂离子电池正极材料Li3V2(PO43/C.通过恒电流充放电测试、循环伏安(CV)、电化学阻抗谱(EIS)等方法,研究了Li3V2(PO43/C在不同电压区间的电化学行为(3.0-4.5 V和3.0-4.8 V).结果表明,3.0-4.8 V电压区间的循环性能和倍率性能均不及3.0-4.5 V电压区间的.3.0-4.5 V区间0.1C(1C=150m A·g-1)倍率首次放电比容量为127.0 mAh·g-1,循环50次后容量保持率为99.5%,而3.0-4.8 V区间的分别为168.2 mAh·g-1和78.5%.经过高倍率测试后再回到0.1C倍率充放电,3.0-4.5 V和3.0-4.8 V的放电比容量分别为初始0.1C倍率的99.0%和80.7%.经过3.0-4.8 V电压区间测试后,少部分第三个锂离子能够在低于4.5V的电压脱出,使3.0-4.5 V电压区间的放电比容量提升了7.4%.CV结果表明3.0-4.8 V区间的容量损失主要表现为第一个锂离子的不可逆损失.极片的X射线衍射(XRD)和X射线光电子能谱(XPS)分析测试结果表明经过3.0-4.8 V测试后,Li3V2(PO43的结构发生了轻微的改变.电感耦合等离子体(ICP)测试结果表明循环后的电解液中含有少量的V.结构变形和V溶解可能是Li3V2(PO43在3.0-4.8 V区间容量衰减的主要原因.  相似文献   
3.
为了解决湿法磷酸生产中高含量SO3的测定,对硫酸钡浊度测定法的反应条件进行了改进,并自行设计制造了自动化的分析系统。测定时样品由蠕动泵(P)推入酸化盘管(AC)中进行酸化和稀释,由定量环(Sv)取样25μL,注入反应系统。在第一反应盘管(RC1)中,SO3与第一混合试剂中的BaCl2溶液反应生成BaSO4悬浊液,该溶液中的聚乙二醇-4000(PEG-4000)和乙醇通过协同作用避免了BaSO4颗粒的团聚,降低粒子间的相互作用,使BaSO4的生成减少,降低了测定的灵敏度,提高了稳定性。在第二反应盘管(RC2)中,BaSO4与第二混合试剂中的NH3·H2O/乙二胺四乙酸二钠(Na2EDTA)溶液发生络合反应同时被Na2EDTA包裹,进一步降低其灵敏度。最后反应溶液进入流通式光度检测器,在680.0nm波长处测试BaSO4悬浊液的吸光度。经优化试验条件,上述第一混合试剂中3种组分的质量分数或体积分数为:BaCl24%,PEG-4000 3%和乙醇2%;第二混合试剂中Na2EDTA的质量分数为6%,NH3·H2O的体积分数为6%。对实际按本方法及重量法分析进行测定,两种方法所得结果的相对偏差在±2%以内,且不受共存的高含量PO43-和F-的干扰。  相似文献   
4.
采用新工艺路线合成高熔点磷酸酯阻燃剂———对苯二酚双(二苯基磷酸酯)(HDP).首先采用对苯二酚和三氯氧磷合成中间产物,再将中间产物与苯酚反应,经分离纯化得到产品HDP,收率达到90%以上,常温下为白色固体.采用傅里叶红外光谱、氢谱、磷谱和质谱测试确定了其结构.同时,研究了HDP的阻燃性,并与间苯二酚双(二苯基磷酸酯)(RDP)进行了比较,研究发现当HDP和RDP分别与成炭剂酚醛树脂(NP)按20/10比例添加到丙烯腈-丁二烯-苯乙烯(ABS)树脂中,增强了复合材料凝聚相阻燃作用,极限氧指数(LOI)有所提高.通过热重及锥形量热分析两种复合材料以及各种组分的热降解过程,阻燃剂的添加对ABS树脂的热稳定性和残炭量明显提高,而且ABS/HDP/NP复合材料的抑烟性更好;同时采用扫描电镜(SEM)和X射线能量色散谱(EDS),发现ABS/HDP/NP复合材料燃烧后成炭空隙均匀,其残炭中磷分布比ABS/RDP/NP复合材料残炭中的磷分布更加均匀.研究表明,HDP与NP互配添加到ABS中,在凝聚相阻燃作用优于RDP.  相似文献   
5.
分别以四水磷酸铁(FePO4·4H2O)和二水草酸亚铁(FeC2O4·2H2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe0.5Co0.5PO4固溶体材料(LiFe0.5Co0.5PO4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC2O4·2H2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 mA·g-1),放电比容量为137.5 mAh·g-1,在10C仍具有57.6 mAh·g-1的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   
6.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   
7.
本文用乙醚作为纯化溶剂,采用有机溶剂重结晶并辅以洗涤萃取等方法来提纯六氟磷酸锂(LiPF6)粗品。工艺操作条件温和、能耗低、原材料无毒无HF腐蚀、简便易得,是一条绿色工艺纯化路线。经红外光谱、X射线粉末衍射对提纯后的晶体LiPF6进行结构确认和物相分析,对最终产品LiPF6中氯离子(Cl-)、乙二醇二甲醚(DME)不溶物和乙醚残留量进行检测分析,还探讨了残留的乙醚对锂离子二次电池首次充放电性能的影响。结果表明:LiPF6粗品经乙醚提纯后纯度达到99.98%,优于商用LiPF6;产品中微量乙醚残留不会对锂离子二次电池首次充放电性能造成不良影响。  相似文献   
8.
近年来,水溶性聚磷酸铵在液体肥料和复合肥料的领域受到了广泛的关注,并在发达国家中得到了大面积的推广及应用。在pH值为5.5~8.0、温度为278.15 K~323.15 K的条件下,本文采用滴定法研究Ca2+-Mg2+-Zn2+体系在聚磷酸铵溶液中的螯合规律。实验结果表明:相同质量分数的聚磷酸铵溶液对金属离子的螯合量会随着体系中Ca2+、Mg2+、Zn2+的摩尔浓度的变化而变化;随着温度的升高而逐渐降低;随着pH的增加而逐渐增加;随着聚合度的升高而逐渐增加。采用傅里叶红外光谱对聚磷酸铵和A1B3C3体系的螯合物进行表征。  相似文献   
9.
分别以四水磷酸铁(Fe PO4·4H2O)和二水草酸亚铁(FeC_2O_4·2 H_2O)为铁源,采用简单便捷的流变相法制备了碳包覆LiFe_(0.5)Co_(0.5)PO_4固溶体材料(LiFe_(0.5)Co_(0.5)PO_4/C,简称为LFCP/C)。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电等测试手段对复合材料的物相、形貌结构和电化学性能进行了表征和测试。结果表明,2种铁源得到的材料均为橄榄石晶型结构且结晶度良好,二者在颗粒尺寸分布、碳包覆效果和电化学性能方面具有显著的差别。用作锂离子电池正极材料时,以FeC_2O_4·2 H_2O为原料得到的LFCP/C具有更优异的电性能:在2.5~5.0 V电压范围内,0.1C倍率下(1C=150 m A·g~(-1)),放电比容量为137.5m Ah·g~(-1),在10C仍具有57.6 m Ah·g~(-1)的放电比容量;0.5C循环100次后容量仍保持78.1%。该样品更佳的电化学性能主要得益于其更小的平均颗粒尺寸,更高的比表面积和理想的碳包覆效果。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号