首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   9篇
化学   9篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
首先, 在碱性条件下, 不使用表面活性剂, 采用St?ber小球法以正硅酸四乙酯(TEOS)和正硅酸四丙酯(TPOS)为硅源, 生成初级氧化硅球形颗粒; 然后, 使酚醛树脂(间苯二酚和甲醛)与球形氧化硅的羟基共缩合形成酚醛树脂-氧化硅复合材料; 最后, 经高温碳化和酸蚀获得了空心碳纳米球(HCNSs). 通过调节TEOS/TPOS的摩尔比获得了一系列具有良好的单分散性且粒径、 壁厚可调节的HCNSs, 其粒径和壁厚分别在280~430 nm和15~63 nm的范围内. 仅以TPOS为硅源时合成的HCNS-0/4具有较大的粒径(426 nm)和壁厚(63 nm)、 较高的比表面积(1216 m2/g)和孔容(0.508 cm3/g), 并且具有较大的挥发性有机化合物(VOCs)吸附性能, 其正己烷、 甲苯和油气的静态吸附容量分别为2.02, 1.42和0.926 g/g, 正己烷和甲苯的动态吸附容量分别为2.01 g/g和1.37 g/g, 均远高于商业化活性炭.  相似文献   
2.
以正硅酸四甲酯(TMOS)为硅源,P123(EO20PO70EO20)为表面活性剂,在p H=6的磷酸缓冲体系中制备了囊泡状二氧化硅材料.利用乙醇萃取脱除模板剂P123,电镜观测结果表明所得二氧化硅具有大孔囊泡结构,N2吸附结果表明其具有高比表面积和大孔容.通过Boehm滴定法确定了硅羟基数量与吸水率呈正相关.用囊泡状二氧化硅材料与商业化活性炭(AC)和硅胶(SG)对水蒸气、正己烷和油气进行静态吸附.在自建的动态正己烷吸附装置上用对囊泡状二氧化硅材料和商业化AC和SG对正己烷进行动态吸附.吸附结果表明,囊泡状二氧化硅材料的静/动态吸附容量和稳定性都远高于商业化活性炭和硅胶.  相似文献   
3.
以十六胺插层磷酸锆为原料, 利用十二烷基二甲基苄基氯化铵为导向模板剂, 通过正硅酸乙酯和巯丙基三甲氧基硅烷的层间共水解缩聚, 并结合双氧水对巯丙基的熏蒸氧化, 制备了磺酸基修饰的硅柱磷酸锆材料。通过XRD、SEM、N2吸附-脱附和FT-IR等方法对柱撑材料进行了结构表征。结果表明, 通过调变预撑剂和模板剂中的碳链长度可以优化材料的柱撑结构和孔结构, 磺酸基修饰的材料孔径分布在2.17 nm左右, 比表面积可达163 m2·g-1, 且保留有规整有序的柱撑磷酸锆层板结构。磺酸基的修饰则成功调变了材料的酸位性质, Brönsted酸量最高可达2.71 mmol·g-1, 总酸量可达5.20 mmol·g-1。利用柠檬酸与正丁醇的酯化反应为探针反应, 由于磺酸基修饰的硅柱磷酸锆材料具有独特的空间反应效应和较为丰富的Brönsted酸位, 酯化反应转化率最高可达95.74%。  相似文献   
4.
采用水热合成技术, 在堇青石蜂窝陶瓷载体上原位合成了SSZ-13分子筛, 并借助X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)等手段对其进行表征. 在此基础上, 研究了合成时间对催化剂结构和机械性能的影响. 另外, 使用固定床反应器测试了离子交换度为50%的Cu-SSZ-13/堇青石催化剂和Cu-SSZ-13催化剂水热老化前后的氨气选择性催化还原(NH3-SCR) NO性能. 结果表明, 通过原位合成法制备的Cu-SSZ-13/堇青石催化剂在200-500 ℃ 的窗口温度内能达到80%以上的转化率, 并在300 ℃ 时达到96.4%的转化率. 在850 ℃水热老化12 h后, Cu-SSZ-13催化剂完全丧失了催化性能, 而Cu-SSZ-13/堇青石催化剂在300 ℃时仍然保持91%的转化率. 使用XRD和固体27Al 核磁共振(27Al NMR)的方法, 研究了水热老化前后两种催化剂结构的变化, 结果表明, 当水热老化12 h 后, Cu-SSZ-13 基本丧失了SSZ-13 结构特征峰, 而Cu-SSZ-13/堇青石仍然保持了一定的SSZ-13 骨架结构. 证明了通过原位合成法制备的Cu-SSZ-13/堇青石催化剂具有较好的抗水热老化性能.  相似文献   
5.
以香蒲为原料制备生物炭(Biochar), 并用不同试剂进行活化. 活化前的Biochar比表面积和孔体积很小, 分别为1.71 m2/g和0.00421 cm3/g, 而活化后的Biochar比表面积和孔容均增大, 其中经碳酸钠(Na2CO3)活化后的Biochar比表面积和孔容最大. 研究了Na2CO3与Biochar的质量比对其活化的影响, 确定了Na2CO3/Biochar最佳质量比为3∶1条件下, 得到的样品Biochar-Na2CO3-3具有最优的表面积和孔容, 分别为624 m2/g和0.211 cm3/g, 并具有优异的挥发性有机化合物(VOCs)吸附性能, 其正己烷、 甲苯和92号汽油的静态吸附容量分别为1.03, 0.814和0.751 g/g, 正己烷和甲苯的动态吸附容量分别为1.00和0.796 g/g, 且吸附稳定性相对较高, 优于商业用活性炭(AC)和硅胶(SG).  相似文献   
6.
利用溶胶-凝胶法以及共缩聚反应合成得到了新型的Ti掺杂SiO2纳米管(TiSNTs)。然后,利用共沉淀的方法在该催化剂上负载了不同Mn含量的Mn/TiSNTs复合催化剂。当Si与Ti的物质的量之比超过5时,可以看到形成了很清楚的蠕虫状形貌。NH3-TPD(氨气程序升温脱附)测试结果显示掺杂到SiO2骨架中的Ti极大增强了催化剂的酸性位点而且提高了NH3在催化剂表面的吸附量和氨选择性催化还原(NH3-SCR)的活性。同时,H2-TPR(氢气程序升温还原)测试结果显示Ti掺杂增强了催化剂的氧化还原能力和储氧容量。NH3还原NOx的SCR结果说明当Si与Ti的物质的量之比为10的时候,Mn/Ti(10) SNT催化剂显示了优异的催化活性,在温度范围为135~325℃时NO转化率超过90%。  相似文献   
7.
利用溶胶-凝胶法以及共缩聚反应合成得到了新型的Ti掺杂SiO2纳米管(TiSNTs)。然后,利用共沉淀的方法在该催化剂上负载了不同Mn含量的Mn/TiSNTs复合催化剂。当Si与Ti的物质的量之比超过5时,可以看到形成了很清楚的蠕虫状形貌。NH3-TPD(氨气程序升温脱附)测试结果显示掺杂到SiO2骨架中的Ti极大增强了催化剂的酸性位点而且提高了NH3在催化剂表面的吸附量和氨选择性催化还原(NH3-SCR)的活性。同时,H2-TPR(氢气程序升温还原)测试结果显示Ti掺杂增强了催化剂的氧化还原能力和储氧容量。NH3还原NOx的SCR结果说明当Si与Ti的物质的量之比为10的时候,Mn/Ti(10)SNT催化剂显示了优异的催化活性,在温度范围为135~325℃时NO转化率超过90%。  相似文献   
8.
以十六胺插层磷酸锆为原料,利用十二烷基二甲基苄基氯化铵为导向模板剂,通过正硅酸乙酯和巯丙基三甲氧基硅烷的层间共水解缩聚,并结合双氧水对巯丙基的熏蒸氧化,制备了磺酸基修饰的硅柱磷酸锆材料。通过XRD、SEM、N2吸附-脱附和FT-IR等方法对柱撑材料进行了结构表征。结果表明,通过调变预撑剂和模板剂中的碳链长度可以优化材料的柱撑结构和孔结构,磺酸基修饰的材料孔径分布在2.17 nm左右,比表面积可达163 m2·g-1,且保留有规整有序的柱撑磷酸锆层板结构。磺酸基的修饰则成功调变了材料的酸位性质,Br觟nsted酸量最高可达2.71 mmol·g-1,总酸量可达5.20 mmol·g-1。利用柠檬酸与正丁醇的酯化反应为探针反应,由于磺酸基修饰的硅柱磷酸锆材料具有独特的空间反应效应和较为丰富的Br觟nsted酸位,酯化反应转化率最高可达95.74%。  相似文献   
9.
利用甲胺消弱α-磷酸锆(α-ZrP)层间作用力, 合成了不同十六烷基三甲基溴化铵(CTMAB)含量插层α-ZrP的复合物CTMAB-ZrP. 通过X射线粉末衍射(XRD), 傅里叶变换红外(FTIR)光谱, 透射电子显微镜(TEM), 扫描电子显微镜(SEM)及氮气等温吸附对CTMAB-ZrP进行了表征, 推测了CTMAB在磷酸锆层间的排列形式. CTMAB-ZrP吸附水中苯酚的实验结果表明, CTMAB-ZrP对苯酚的吸附量不仅与CTMAB的插入量和层内空间位阻有关, 还与溶液的pH值密切相关. 对苯酚、2-氯苯酚、2,4-二氯苯酚、对甲基苯酚及3,5-二甲基苯酚的吸附实验结果表明, CTMAB-ZrP对酚类化合物的吸附量与酚的疏水性成正相关, 而与酚类化合物的酸性无关. Henry型和Freundlich型吸附等温方程都能很好地拟合CTMAB-ZrP对苯酚、2-氯苯酚和2,4-二氯苯酚的吸附过程, 表明吸附主要是酚在插层复合物层间有机相中的分配作用所致.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号